Glass transition temperature prediction of disordered molecular solids
Abstract Glass transition temperature, T g, is the key quantity for assessing morphological stability and molecular ordering of films of organic semiconductors. A reliable prediction of T g from the chemical structure is, however, challenging, as it is sensitive to both molecular interactions and an...
Guardado en:
Autores principales: | Kun-Han Lin, Leanne Paterson, Falk May, Denis Andrienko |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/57d92183e6db453eae527307d3cc230e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Computational modeling sheds light on structural evolution in metallic glasses and supercooled liquids
por: Jun Ding, et al.
Publicado: (2017) -
Rational design of chemically complex metallic glasses by hybrid modeling guided machine learning
por: Z. Q. Zhou, et al.
Publicado: (2021) -
Predicting the propensity for thermally activated β events in metallic glasses via interpretable machine learning
por: Qi Wang, et al.
Publicado: (2020) -
A high-throughput framework for determining adsorption energies on solid surfaces
por: Joseph H. Montoya, et al.
Publicado: (2017) -
Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses
por: Zhichao Lu, et al.
Publicado: (2020)