Picene and PTCDI based solution processable ambipolar OFETs

Abstract Facile and efficient solution-processed bottom gate top contact organic field-effect transistor was fabricated by employing the active layer of picene (donor, D) and N,N′-di(dodecyl)-perylene-3,4,9,10-tetracarboxylic diimide (acceptor, A). Balanced hole (0.12 cm2/Vs) and electron (0.10 cm2/...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Balu Balambiga, Ramachandran Dheepika, Paneerselvam Devibala, Predhanekar Mohamed Imran, Samuthira Nagarajan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/57e23aaff7ac44e095d9332825ee8534
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:57e23aaff7ac44e095d9332825ee8534
record_format dspace
spelling oai:doaj.org-article:57e23aaff7ac44e095d9332825ee85342021-12-02T12:42:27ZPicene and PTCDI based solution processable ambipolar OFETs10.1038/s41598-020-78356-52045-2322https://doaj.org/article/57e23aaff7ac44e095d9332825ee85342020-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-78356-5https://doaj.org/toc/2045-2322Abstract Facile and efficient solution-processed bottom gate top contact organic field-effect transistor was fabricated by employing the active layer of picene (donor, D) and N,N′-di(dodecyl)-perylene-3,4,9,10-tetracarboxylic diimide (acceptor, A). Balanced hole (0.12 cm2/Vs) and electron (0.10 cm2/Vs) mobility with Ion/off of 104 ratio were obtained for 1:1 ratio of D/A blend. On increasing the ratio of either D or A, the charge carrier mobility and Ion/off ratio improved than that of the pristine molecules. Maximum hole (µmax,h) and electron mobilities (µmax,e) were achieved up to 0.44 cm2/Vs for 3:1 and 0.25 cm2/Vs for 1:3, (D/A) respectively. This improvement is due to the donor phase function as the trap center for minority holes and decreased trap density of the dielectric layer, and vice versa. High ionization potential (− 5.71 eV) of 3:1 and lower electron affinity of (− 3.09 eV) of 1:3 supports the fine tuning of frontier molecular orbitals in the blend. The additional peak formed for the blends at high negative potential of − 1.3 V in cyclic voltammetry supports the molecular level electronic interactions of D and A. Thermal studies supported the high thermal stability of D/A blends and SEM analysis of thin films indicated their efficient molecular packing. Quasi-π–π stacking owing to the large π conjugated plane and the crystallinity of the films are well proved by GIXRD. DFT calculations also supported the electronic distribution of the molecules. The electron density of states (DOS) of pristine D and A molecules specifies the non-negligible interaction coupling among the molecules. This D/A pair has unlimited prospective for plentiful electronic applications in non-volatile memory devices, inverters and logic circuits.Balu BalambigaRamachandran DheepikaPaneerselvam DevibalaPredhanekar Mohamed ImranSamuthira NagarajanNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-13 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Balu Balambiga
Ramachandran Dheepika
Paneerselvam Devibala
Predhanekar Mohamed Imran
Samuthira Nagarajan
Picene and PTCDI based solution processable ambipolar OFETs
description Abstract Facile and efficient solution-processed bottom gate top contact organic field-effect transistor was fabricated by employing the active layer of picene (donor, D) and N,N′-di(dodecyl)-perylene-3,4,9,10-tetracarboxylic diimide (acceptor, A). Balanced hole (0.12 cm2/Vs) and electron (0.10 cm2/Vs) mobility with Ion/off of 104 ratio were obtained for 1:1 ratio of D/A blend. On increasing the ratio of either D or A, the charge carrier mobility and Ion/off ratio improved than that of the pristine molecules. Maximum hole (µmax,h) and electron mobilities (µmax,e) were achieved up to 0.44 cm2/Vs for 3:1 and 0.25 cm2/Vs for 1:3, (D/A) respectively. This improvement is due to the donor phase function as the trap center for minority holes and decreased trap density of the dielectric layer, and vice versa. High ionization potential (− 5.71 eV) of 3:1 and lower electron affinity of (− 3.09 eV) of 1:3 supports the fine tuning of frontier molecular orbitals in the blend. The additional peak formed for the blends at high negative potential of − 1.3 V in cyclic voltammetry supports the molecular level electronic interactions of D and A. Thermal studies supported the high thermal stability of D/A blends and SEM analysis of thin films indicated their efficient molecular packing. Quasi-π–π stacking owing to the large π conjugated plane and the crystallinity of the films are well proved by GIXRD. DFT calculations also supported the electronic distribution of the molecules. The electron density of states (DOS) of pristine D and A molecules specifies the non-negligible interaction coupling among the molecules. This D/A pair has unlimited prospective for plentiful electronic applications in non-volatile memory devices, inverters and logic circuits.
format article
author Balu Balambiga
Ramachandran Dheepika
Paneerselvam Devibala
Predhanekar Mohamed Imran
Samuthira Nagarajan
author_facet Balu Balambiga
Ramachandran Dheepika
Paneerselvam Devibala
Predhanekar Mohamed Imran
Samuthira Nagarajan
author_sort Balu Balambiga
title Picene and PTCDI based solution processable ambipolar OFETs
title_short Picene and PTCDI based solution processable ambipolar OFETs
title_full Picene and PTCDI based solution processable ambipolar OFETs
title_fullStr Picene and PTCDI based solution processable ambipolar OFETs
title_full_unstemmed Picene and PTCDI based solution processable ambipolar OFETs
title_sort picene and ptcdi based solution processable ambipolar ofets
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/57e23aaff7ac44e095d9332825ee8534
work_keys_str_mv AT balubalambiga piceneandptcdibasedsolutionprocessableambipolarofets
AT ramachandrandheepika piceneandptcdibasedsolutionprocessableambipolarofets
AT paneerselvamdevibala piceneandptcdibasedsolutionprocessableambipolarofets
AT predhanekarmohamedimran piceneandptcdibasedsolutionprocessableambipolarofets
AT samuthiranagarajan piceneandptcdibasedsolutionprocessableambipolarofets
_version_ 1718393686561128448