Development of an artificial neural network as a tool for predicting the chemical attributes of fresh peach fruits.
This investigation aimed to develop a method to predict the total soluble solids (TSS), titratable acidity, TSS/titratable acidity, vitamin C, anthocyanin, and total carotenoids contents using surface color values (L*, Hue and chroma), single fruit weight, juice volume, and sphericity percent of fre...
Guardado en:
Autores principales: | Mahmoud Abdel-Sattar, Rashid S Al-Obeed, Abdulwahed M Aboukarima, Dalia H Eshra |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/57f61dbd633a49f4b0cb1ba3d198a882 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Perceived quality in fresh peaches: an approach through structural equation modeling
por: Mora,Marcos, et al.
Publicado: (2011) -
Impacts of exogenous ROS scavenger ascorbic acid on the storability and quality attributes of fresh longan fruit
por: Jingyun Liu, et al.
Publicado: (2021) -
Effect of hot water dips on the quality of fresh-cut Ryan Sun peaches
por: Obando-Ulloa,Javier M, et al.
Publicado: (2015) -
Identifying sources of metabolomic diversity and reconfiguration in peach fruit: taking notes for quality fruit improvement
por: María F. Drincovich
Publicado: (2021) -
Genome re-sequencing reveals the evolutionary history of peach fruit edibility
por: Yang Yu, et al.
Publicado: (2018)