On the natural spatio-temporal heterogeneity of South Pacific nitrous oxide
Ocean oxygen minimum zones (OMZs) are known to emit the powerful greenhouse gas N2O, but global emission dynamics are not constrained. Here the authors use air trajectory analyses and find that air masses pick up N2O as they pass over OMZs, and that overall concentrations are elevated during La Niña...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/57fa564170b848d49bd148a745b28ef5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Ocean oxygen minimum zones (OMZs) are known to emit the powerful greenhouse gas N2O, but global emission dynamics are not constrained. Here the authors use air trajectory analyses and find that air masses pick up N2O as they pass over OMZs, and that overall concentrations are elevated during La Niña events. |
---|