Sparse Graph Learning Under Laplacian-Related Constraints
We consider the problem of learning a sparse undirected graph underlying a given set of multivariate data. We focus on graph Laplacian-related constraints on the sparse precision matrix that encodes conditional dependence between the random variables associated with the graph nodes. Under these cons...
Enregistré dans:
Auteur principal: | Jitendra K. Tugnait |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/57fb50f62d6341fc965c97b77f4da80b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Clustering Vertex-Weighted Graphs by Spectral Methods
par: Juan-Luis García-Zapata, et autres
Publié: (2021) -
On r− dynamic coloring of the gear graph families
par: Deepa,T., et autres
Publié: (2021) -
Vertex equitable labeling of union of cyclic snake related graphs
par: Jeyanthi,P., et autres
Publié: (2016) -
Construction of sequences of borderenergetic graphs
par: Vaidya,S. K., et autres
Publié: (2019) -
Graph-Based Hand-Object Meshes and Poses Reconstruction With Multi-Modal Input
par: Murad Almadani, et autres
Publié: (2021)