Sparse Graph Learning Under Laplacian-Related Constraints
We consider the problem of learning a sparse undirected graph underlying a given set of multivariate data. We focus on graph Laplacian-related constraints on the sparse precision matrix that encodes conditional dependence between the random variables associated with the graph nodes. Under these cons...
Guardado en:
Autor principal: | Jitendra K. Tugnait |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/57fb50f62d6341fc965c97b77f4da80b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Clustering Vertex-Weighted Graphs by Spectral Methods
por: Juan-Luis García-Zapata, et al.
Publicado: (2021) -
On r− dynamic coloring of the gear graph families
por: Deepa,T., et al.
Publicado: (2021) -
Vertex equitable labeling of union of cyclic snake related graphs
por: Jeyanthi,P., et al.
Publicado: (2016) -
Construction of sequences of borderenergetic graphs
por: Vaidya,S. K., et al.
Publicado: (2019) -
Graph-Based Hand-Object Meshes and Poses Reconstruction With Multi-Modal Input
por: Murad Almadani, et al.
Publicado: (2021)