Deep-Learning-Based Natural Language Processing of Serial Free-Text Radiological Reports for Predicting Rectal Cancer Patient Survival
Most electronic medical records, such as free-text radiological reports, are unstructured; however, the methodological approaches to analyzing these accumulating unstructured records are limited. This article proposes a deep-transfer-learning-based natural language processing model that analyzes ser...
Guardado en:
Autores principales: | Sunkyu Kim, Choong-kun Lee, Yonghwa Choi, Eun Sil Baek, Jeong Eun Choi, Joon Seok Lim, Jaewoo Kang, Sang Joon Shin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/580e429283964cb4bcd085c2ffc223f1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prognostic Significance of EMVI in Rectal Cancer in a Tertiary Cancer Hospital in India
por: Sayali Y. Pangarkar, et al.
Publicado: (2021) -
Rectal cancer (lecture)
por: E. G. Grigoryev, et al.
Publicado: (2015) -
UTILIDAD DE LA RESONANCIA MAGNÉTICA CON ENDOCOIL EN LA ETAPIFICACION Y PLANEAMIENTO DEL TRATAMIENTO DEL CANCER RECTAL
por: Fernández A,Manuel, et al.
Publicado: (2007) -
Reconstruction and preservation of holding structures of pelvic floor at the operations on account of rectal cancer
por: G. V. Bondar, et al.
Publicado: (2013) -
The effect of COVID-19 on the Management of Rectal Cancer
por: Seyed Vahid Hosseini, et al.
Publicado: (2021)