Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing

Designing efficient neuromorphic systems for complex temporal tasks remains a challenge. Zhong et al. develop a parallel memristor-based reservoir computing system capable of tuning critical parameters, achieving classification accuracy of 99.6% in spoken-digit recognition and time-series prediction...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yanan Zhong, Jianshi Tang, Xinyi Li, Bin Gao, He Qian, Huaqiang Wu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/581e839a8b204dbd986773af5e0fb4bc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Designing efficient neuromorphic systems for complex temporal tasks remains a challenge. Zhong et al. develop a parallel memristor-based reservoir computing system capable of tuning critical parameters, achieving classification accuracy of 99.6% in spoken-digit recognition and time-series prediction error of 0.046 in the Hénon map.