Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing

Designing efficient neuromorphic systems for complex temporal tasks remains a challenge. Zhong et al. develop a parallel memristor-based reservoir computing system capable of tuning critical parameters, achieving classification accuracy of 99.6% in spoken-digit recognition and time-series prediction...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yanan Zhong, Jianshi Tang, Xinyi Li, Bin Gao, He Qian, Huaqiang Wu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/581e839a8b204dbd986773af5e0fb4bc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:581e839a8b204dbd986773af5e0fb4bc
record_format dspace
spelling oai:doaj.org-article:581e839a8b204dbd986773af5e0fb4bc2021-12-02T14:09:00ZDynamic memristor-based reservoir computing for high-efficiency temporal signal processing10.1038/s41467-020-20692-12041-1723https://doaj.org/article/581e839a8b204dbd986773af5e0fb4bc2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-20692-1https://doaj.org/toc/2041-1723Designing efficient neuromorphic systems for complex temporal tasks remains a challenge. Zhong et al. develop a parallel memristor-based reservoir computing system capable of tuning critical parameters, achieving classification accuracy of 99.6% in spoken-digit recognition and time-series prediction error of 0.046 in the Hénon map.Yanan ZhongJianshi TangXinyi LiBin GaoHe QianHuaqiang WuNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Yanan Zhong
Jianshi Tang
Xinyi Li
Bin Gao
He Qian
Huaqiang Wu
Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing
description Designing efficient neuromorphic systems for complex temporal tasks remains a challenge. Zhong et al. develop a parallel memristor-based reservoir computing system capable of tuning critical parameters, achieving classification accuracy of 99.6% in spoken-digit recognition and time-series prediction error of 0.046 in the Hénon map.
format article
author Yanan Zhong
Jianshi Tang
Xinyi Li
Bin Gao
He Qian
Huaqiang Wu
author_facet Yanan Zhong
Jianshi Tang
Xinyi Li
Bin Gao
He Qian
Huaqiang Wu
author_sort Yanan Zhong
title Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing
title_short Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing
title_full Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing
title_fullStr Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing
title_full_unstemmed Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing
title_sort dynamic memristor-based reservoir computing for high-efficiency temporal signal processing
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/581e839a8b204dbd986773af5e0fb4bc
work_keys_str_mv AT yananzhong dynamicmemristorbasedreservoircomputingforhighefficiencytemporalsignalprocessing
AT jianshitang dynamicmemristorbasedreservoircomputingforhighefficiencytemporalsignalprocessing
AT xinyili dynamicmemristorbasedreservoircomputingforhighefficiencytemporalsignalprocessing
AT bingao dynamicmemristorbasedreservoircomputingforhighefficiencytemporalsignalprocessing
AT heqian dynamicmemristorbasedreservoircomputingforhighefficiencytemporalsignalprocessing
AT huaqiangwu dynamicmemristorbasedreservoircomputingforhighefficiencytemporalsignalprocessing
_version_ 1718391907299622912