Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing
Designing efficient neuromorphic systems for complex temporal tasks remains a challenge. Zhong et al. develop a parallel memristor-based reservoir computing system capable of tuning critical parameters, achieving classification accuracy of 99.6% in spoken-digit recognition and time-series prediction...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/581e839a8b204dbd986773af5e0fb4bc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:581e839a8b204dbd986773af5e0fb4bc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:581e839a8b204dbd986773af5e0fb4bc2021-12-02T14:09:00ZDynamic memristor-based reservoir computing for high-efficiency temporal signal processing10.1038/s41467-020-20692-12041-1723https://doaj.org/article/581e839a8b204dbd986773af5e0fb4bc2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-20692-1https://doaj.org/toc/2041-1723Designing efficient neuromorphic systems for complex temporal tasks remains a challenge. Zhong et al. develop a parallel memristor-based reservoir computing system capable of tuning critical parameters, achieving classification accuracy of 99.6% in spoken-digit recognition and time-series prediction error of 0.046 in the Hénon map.Yanan ZhongJianshi TangXinyi LiBin GaoHe QianHuaqiang WuNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Yanan Zhong Jianshi Tang Xinyi Li Bin Gao He Qian Huaqiang Wu Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing |
description |
Designing efficient neuromorphic systems for complex temporal tasks remains a challenge. Zhong et al. develop a parallel memristor-based reservoir computing system capable of tuning critical parameters, achieving classification accuracy of 99.6% in spoken-digit recognition and time-series prediction error of 0.046 in the Hénon map. |
format |
article |
author |
Yanan Zhong Jianshi Tang Xinyi Li Bin Gao He Qian Huaqiang Wu |
author_facet |
Yanan Zhong Jianshi Tang Xinyi Li Bin Gao He Qian Huaqiang Wu |
author_sort |
Yanan Zhong |
title |
Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing |
title_short |
Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing |
title_full |
Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing |
title_fullStr |
Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing |
title_full_unstemmed |
Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing |
title_sort |
dynamic memristor-based reservoir computing for high-efficiency temporal signal processing |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/581e839a8b204dbd986773af5e0fb4bc |
work_keys_str_mv |
AT yananzhong dynamicmemristorbasedreservoircomputingforhighefficiencytemporalsignalprocessing AT jianshitang dynamicmemristorbasedreservoircomputingforhighefficiencytemporalsignalprocessing AT xinyili dynamicmemristorbasedreservoircomputingforhighefficiencytemporalsignalprocessing AT bingao dynamicmemristorbasedreservoircomputingforhighefficiencytemporalsignalprocessing AT heqian dynamicmemristorbasedreservoircomputingforhighefficiencytemporalsignalprocessing AT huaqiangwu dynamicmemristorbasedreservoircomputingforhighefficiencytemporalsignalprocessing |
_version_ |
1718391907299622912 |