Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing
Designing efficient neuromorphic systems for complex temporal tasks remains a challenge. Zhong et al. develop a parallel memristor-based reservoir computing system capable of tuning critical parameters, achieving classification accuracy of 99.6% in spoken-digit recognition and time-series prediction...
Guardado en:
Autores principales: | Yanan Zhong, Jianshi Tang, Xinyi Li, Bin Gao, He Qian, Huaqiang Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/581e839a8b204dbd986773af5e0fb4bc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reservoir computing using dynamic memristors for temporal information processing
por: Chao Du, et al.
Publicado: (2017) -
Neural signal analysis with memristor arrays towards high-efficiency brain–machine interfaces
por: Zhengwu Liu, et al.
Publicado: (2020) -
Time-varying data processing with nonvolatile memristor-based temporal kernel
por: Yoon Ho Jang, et al.
Publicado: (2021) -
90% yield production of polymer nano-memristor for in-memory computing
por: Bin Zhang, et al.
Publicado: (2021) -
Theory and experimental verification of configurable computing with stochastic memristors
por: Rawan Naous, et al.
Publicado: (2021)