A multi-scale pipeline linking drug transcriptomics with pharmacokinetics predicts in vivo interactions of tuberculosis drugs

Abstract Tuberculosis (TB) is the deadliest infectious disease worldwide. The design of new treatments for TB is hindered by the large number of candidate drugs, drug combinations, dosing choices, and complex pharmaco-kinetics/dynamics (PK/PD). Here we study the interplay of these factors in designi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Joseph M. Cicchese, Awanti Sambarey, Denise Kirschner, Jennifer J. Linderman, Sriram Chandrasekaran
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/58251f8464314b818121f7cf9632b6a2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:58251f8464314b818121f7cf9632b6a2
record_format dspace
spelling oai:doaj.org-article:58251f8464314b818121f7cf9632b6a22021-12-02T13:20:04ZA multi-scale pipeline linking drug transcriptomics with pharmacokinetics predicts in vivo interactions of tuberculosis drugs10.1038/s41598-021-84827-02045-2322https://doaj.org/article/58251f8464314b818121f7cf9632b6a22021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-84827-0https://doaj.org/toc/2045-2322Abstract Tuberculosis (TB) is the deadliest infectious disease worldwide. The design of new treatments for TB is hindered by the large number of candidate drugs, drug combinations, dosing choices, and complex pharmaco-kinetics/dynamics (PK/PD). Here we study the interplay of these factors in designing combination therapies by linking a machine-learning model, INDIGO-MTB, which predicts in vitro drug interactions using drug transcriptomics, with a multi-scale model of drug PK/PD and pathogen-immune interactions called GranSim. We calculate an in vivo drug interaction score (iDIS) from dynamics of drug diffusion, spatial distribution, and activity within lesions against various pathogen sub-populations. The iDIS of drug regimens evaluated against non-replicating bacteria significantly correlates with efficacy metrics from clinical trials. Our approach identifies mechanisms that can amplify synergistic or mitigate antagonistic drug interactions in vivo by modulating the relative distribution of drugs. Our mechanistic framework enables efficient evaluation of in vivo drug interactions and optimization of combination therapies.Joseph M. CiccheseAwanti SambareyDenise KirschnerJennifer J. LindermanSriram ChandrasekaranNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Joseph M. Cicchese
Awanti Sambarey
Denise Kirschner
Jennifer J. Linderman
Sriram Chandrasekaran
A multi-scale pipeline linking drug transcriptomics with pharmacokinetics predicts in vivo interactions of tuberculosis drugs
description Abstract Tuberculosis (TB) is the deadliest infectious disease worldwide. The design of new treatments for TB is hindered by the large number of candidate drugs, drug combinations, dosing choices, and complex pharmaco-kinetics/dynamics (PK/PD). Here we study the interplay of these factors in designing combination therapies by linking a machine-learning model, INDIGO-MTB, which predicts in vitro drug interactions using drug transcriptomics, with a multi-scale model of drug PK/PD and pathogen-immune interactions called GranSim. We calculate an in vivo drug interaction score (iDIS) from dynamics of drug diffusion, spatial distribution, and activity within lesions against various pathogen sub-populations. The iDIS of drug regimens evaluated against non-replicating bacteria significantly correlates with efficacy metrics from clinical trials. Our approach identifies mechanisms that can amplify synergistic or mitigate antagonistic drug interactions in vivo by modulating the relative distribution of drugs. Our mechanistic framework enables efficient evaluation of in vivo drug interactions and optimization of combination therapies.
format article
author Joseph M. Cicchese
Awanti Sambarey
Denise Kirschner
Jennifer J. Linderman
Sriram Chandrasekaran
author_facet Joseph M. Cicchese
Awanti Sambarey
Denise Kirschner
Jennifer J. Linderman
Sriram Chandrasekaran
author_sort Joseph M. Cicchese
title A multi-scale pipeline linking drug transcriptomics with pharmacokinetics predicts in vivo interactions of tuberculosis drugs
title_short A multi-scale pipeline linking drug transcriptomics with pharmacokinetics predicts in vivo interactions of tuberculosis drugs
title_full A multi-scale pipeline linking drug transcriptomics with pharmacokinetics predicts in vivo interactions of tuberculosis drugs
title_fullStr A multi-scale pipeline linking drug transcriptomics with pharmacokinetics predicts in vivo interactions of tuberculosis drugs
title_full_unstemmed A multi-scale pipeline linking drug transcriptomics with pharmacokinetics predicts in vivo interactions of tuberculosis drugs
title_sort multi-scale pipeline linking drug transcriptomics with pharmacokinetics predicts in vivo interactions of tuberculosis drugs
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/58251f8464314b818121f7cf9632b6a2
work_keys_str_mv AT josephmcicchese amultiscalepipelinelinkingdrugtranscriptomicswithpharmacokineticspredictsinvivointeractionsoftuberculosisdrugs
AT awantisambarey amultiscalepipelinelinkingdrugtranscriptomicswithpharmacokineticspredictsinvivointeractionsoftuberculosisdrugs
AT denisekirschner amultiscalepipelinelinkingdrugtranscriptomicswithpharmacokineticspredictsinvivointeractionsoftuberculosisdrugs
AT jenniferjlinderman amultiscalepipelinelinkingdrugtranscriptomicswithpharmacokineticspredictsinvivointeractionsoftuberculosisdrugs
AT sriramchandrasekaran amultiscalepipelinelinkingdrugtranscriptomicswithpharmacokineticspredictsinvivointeractionsoftuberculosisdrugs
AT josephmcicchese multiscalepipelinelinkingdrugtranscriptomicswithpharmacokineticspredictsinvivointeractionsoftuberculosisdrugs
AT awantisambarey multiscalepipelinelinkingdrugtranscriptomicswithpharmacokineticspredictsinvivointeractionsoftuberculosisdrugs
AT denisekirschner multiscalepipelinelinkingdrugtranscriptomicswithpharmacokineticspredictsinvivointeractionsoftuberculosisdrugs
AT jenniferjlinderman multiscalepipelinelinkingdrugtranscriptomicswithpharmacokineticspredictsinvivointeractionsoftuberculosisdrugs
AT sriramchandrasekaran multiscalepipelinelinkingdrugtranscriptomicswithpharmacokineticspredictsinvivointeractionsoftuberculosisdrugs
_version_ 1718393212302786560