A multi-scale pipeline linking drug transcriptomics with pharmacokinetics predicts in vivo interactions of tuberculosis drugs
Abstract Tuberculosis (TB) is the deadliest infectious disease worldwide. The design of new treatments for TB is hindered by the large number of candidate drugs, drug combinations, dosing choices, and complex pharmaco-kinetics/dynamics (PK/PD). Here we study the interplay of these factors in designi...
Enregistré dans:
Auteurs principaux: | Joseph M. Cicchese, Awanti Sambarey, Denise Kirschner, Jennifer J. Linderman, Sriram Chandrasekaran |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/58251f8464314b818121f7cf9632b6a2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Transcriptomic Signatures Predict Regulators of Drug Synergy and Clinical Regimen Efficacy against Tuberculosis
par: Shuyi Ma, et autres
Publié: (2019) -
The pipeline of new molecules and regimens against drug-resistant tuberculosis
par: Todd A. Black, et autres
Publié: (2021) -
Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19
par: Brian L. Le, et autres
Publié: (2021) -
Development of physiologically‐based pharmacokinetic models for standard of care and newer tuberculosis drugs
par: Helen Humphries, et autres
Publié: (2021) -
Application of Physiologically Based Pharmacokinetic Modeling to Evaluate the Drug–Drug and Drug–Disease Interactions of Apatinib
par: Hongrui Liu, et autres
Publié: (2021)