A multi-scale pipeline linking drug transcriptomics with pharmacokinetics predicts in vivo interactions of tuberculosis drugs
Abstract Tuberculosis (TB) is the deadliest infectious disease worldwide. The design of new treatments for TB is hindered by the large number of candidate drugs, drug combinations, dosing choices, and complex pharmaco-kinetics/dynamics (PK/PD). Here we study the interplay of these factors in designi...
Guardado en:
Autores principales: | Joseph M. Cicchese, Awanti Sambarey, Denise Kirschner, Jennifer J. Linderman, Sriram Chandrasekaran |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/58251f8464314b818121f7cf9632b6a2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Transcriptomic Signatures Predict Regulators of Drug Synergy and Clinical Regimen Efficacy against Tuberculosis
por: Shuyi Ma, et al.
Publicado: (2019) -
The pipeline of new molecules and regimens against drug-resistant tuberculosis
por: Todd A. Black, et al.
Publicado: (2021) -
Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19
por: Brian L. Le, et al.
Publicado: (2021) -
Development of physiologically‐based pharmacokinetic models for standard of care and newer tuberculosis drugs
por: Helen Humphries, et al.
Publicado: (2021) -
Application of Physiologically Based Pharmacokinetic Modeling to Evaluate the Drug–Drug and Drug–Disease Interactions of Apatinib
por: Hongrui Liu, et al.
Publicado: (2021)