Machine learning method for tight-binding Hamiltonian parameterization from ab-initio band structure
Abstract The tight-binding (TB) method is an ideal candidate for determining electronic and transport properties for a large-scale system. It describes the system as real-space Hamiltonian matrices expressed on a manageable number of parameters, leading to substantially lower computational costs tha...
Guardado en:
Autores principales: | Zifeng Wang, Shizhuo Ye, Hao Wang, Jin He, Qijun Huang, Sheng Chang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5828919a2b55495b889aabfc55773a47 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Effective mass and Fermi surface complexity factor from ab initio band structure calculations
por: Zachary M. Gibbs, et al.
Publicado: (2017) -
Ab initio molecular dynamics and materials design for embedded phase-change memory
por: Liang Sun, et al.
Publicado: (2021) -
Four-dimensional imaging of lattice dynamics using ab-initio simulation
por: Navdeep Rana, et al.
Publicado: (2021) -
Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning
por: Bharat Medasani, et al.
Publicado: (2016) -
Experimental verification of the ab initio phase transition sequence in SrZrO3 and comparisons with SrHfO3 and SrSnO 3
por: Ashok Kumar, et al.
Publicado: (2017)