A new estimator for the multicollinear Poisson regression model: simulation and application

Abstract The maximum likelihood estimator (MLE) suffers from the instability problem in the presence of multicollinearity for a Poisson regression model (PRM). In this study, we propose a new estimator with some biasing parameters to estimate the regression coefficients for the PRM when there is mul...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Adewale F. Lukman, Emmanuel Adewuyi, Kristofer Månsson, B. M. Golam Kibria
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/58340e7ad13e44fa92450363b9cfc469
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The maximum likelihood estimator (MLE) suffers from the instability problem in the presence of multicollinearity for a Poisson regression model (PRM). In this study, we propose a new estimator with some biasing parameters to estimate the regression coefficients for the PRM when there is multicollinearity problem. Some simulation experiments are conducted to compare the estimators' performance by using the mean squared error (MSE) criterion. For illustration purposes, aircraft damage data has been analyzed. The simulation results and the real-life application evidenced that the proposed estimator performs better than the rest of the estimators.