A new estimator for the multicollinear Poisson regression model: simulation and application
Abstract The maximum likelihood estimator (MLE) suffers from the instability problem in the presence of multicollinearity for a Poisson regression model (PRM). In this study, we propose a new estimator with some biasing parameters to estimate the regression coefficients for the PRM when there is mul...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/58340e7ad13e44fa92450363b9cfc469 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:58340e7ad13e44fa92450363b9cfc469 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:58340e7ad13e44fa92450363b9cfc4692021-12-02T14:27:02ZA new estimator for the multicollinear Poisson regression model: simulation and application10.1038/s41598-021-82582-w2045-2322https://doaj.org/article/58340e7ad13e44fa92450363b9cfc4692021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82582-whttps://doaj.org/toc/2045-2322Abstract The maximum likelihood estimator (MLE) suffers from the instability problem in the presence of multicollinearity for a Poisson regression model (PRM). In this study, we propose a new estimator with some biasing parameters to estimate the regression coefficients for the PRM when there is multicollinearity problem. Some simulation experiments are conducted to compare the estimators' performance by using the mean squared error (MSE) criterion. For illustration purposes, aircraft damage data has been analyzed. The simulation results and the real-life application evidenced that the proposed estimator performs better than the rest of the estimators.Adewale F. LukmanEmmanuel AdewuyiKristofer MånssonB. M. Golam KibriaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Adewale F. Lukman Emmanuel Adewuyi Kristofer Månsson B. M. Golam Kibria A new estimator for the multicollinear Poisson regression model: simulation and application |
description |
Abstract The maximum likelihood estimator (MLE) suffers from the instability problem in the presence of multicollinearity for a Poisson regression model (PRM). In this study, we propose a new estimator with some biasing parameters to estimate the regression coefficients for the PRM when there is multicollinearity problem. Some simulation experiments are conducted to compare the estimators' performance by using the mean squared error (MSE) criterion. For illustration purposes, aircraft damage data has been analyzed. The simulation results and the real-life application evidenced that the proposed estimator performs better than the rest of the estimators. |
format |
article |
author |
Adewale F. Lukman Emmanuel Adewuyi Kristofer Månsson B. M. Golam Kibria |
author_facet |
Adewale F. Lukman Emmanuel Adewuyi Kristofer Månsson B. M. Golam Kibria |
author_sort |
Adewale F. Lukman |
title |
A new estimator for the multicollinear Poisson regression model: simulation and application |
title_short |
A new estimator for the multicollinear Poisson regression model: simulation and application |
title_full |
A new estimator for the multicollinear Poisson regression model: simulation and application |
title_fullStr |
A new estimator for the multicollinear Poisson regression model: simulation and application |
title_full_unstemmed |
A new estimator for the multicollinear Poisson regression model: simulation and application |
title_sort |
new estimator for the multicollinear poisson regression model: simulation and application |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/58340e7ad13e44fa92450363b9cfc469 |
work_keys_str_mv |
AT adewaleflukman anewestimatorforthemulticollinearpoissonregressionmodelsimulationandapplication AT emmanueladewuyi anewestimatorforthemulticollinearpoissonregressionmodelsimulationandapplication AT kristofermansson anewestimatorforthemulticollinearpoissonregressionmodelsimulationandapplication AT bmgolamkibria anewestimatorforthemulticollinearpoissonregressionmodelsimulationandapplication AT adewaleflukman newestimatorforthemulticollinearpoissonregressionmodelsimulationandapplication AT emmanueladewuyi newestimatorforthemulticollinearpoissonregressionmodelsimulationandapplication AT kristofermansson newestimatorforthemulticollinearpoissonregressionmodelsimulationandapplication AT bmgolamkibria newestimatorforthemulticollinearpoissonregressionmodelsimulationandapplication |
_version_ |
1718391310400880640 |