A new estimator for the multicollinear Poisson regression model: simulation and application

Abstract The maximum likelihood estimator (MLE) suffers from the instability problem in the presence of multicollinearity for a Poisson regression model (PRM). In this study, we propose a new estimator with some biasing parameters to estimate the regression coefficients for the PRM when there is mul...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Adewale F. Lukman, Emmanuel Adewuyi, Kristofer Månsson, B. M. Golam Kibria
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/58340e7ad13e44fa92450363b9cfc469
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:58340e7ad13e44fa92450363b9cfc469
record_format dspace
spelling oai:doaj.org-article:58340e7ad13e44fa92450363b9cfc4692021-12-02T14:27:02ZA new estimator for the multicollinear Poisson regression model: simulation and application10.1038/s41598-021-82582-w2045-2322https://doaj.org/article/58340e7ad13e44fa92450363b9cfc4692021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82582-whttps://doaj.org/toc/2045-2322Abstract The maximum likelihood estimator (MLE) suffers from the instability problem in the presence of multicollinearity for a Poisson regression model (PRM). In this study, we propose a new estimator with some biasing parameters to estimate the regression coefficients for the PRM when there is multicollinearity problem. Some simulation experiments are conducted to compare the estimators' performance by using the mean squared error (MSE) criterion. For illustration purposes, aircraft damage data has been analyzed. The simulation results and the real-life application evidenced that the proposed estimator performs better than the rest of the estimators.Adewale F. LukmanEmmanuel AdewuyiKristofer MånssonB. M. Golam KibriaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Adewale F. Lukman
Emmanuel Adewuyi
Kristofer Månsson
B. M. Golam Kibria
A new estimator for the multicollinear Poisson regression model: simulation and application
description Abstract The maximum likelihood estimator (MLE) suffers from the instability problem in the presence of multicollinearity for a Poisson regression model (PRM). In this study, we propose a new estimator with some biasing parameters to estimate the regression coefficients for the PRM when there is multicollinearity problem. Some simulation experiments are conducted to compare the estimators' performance by using the mean squared error (MSE) criterion. For illustration purposes, aircraft damage data has been analyzed. The simulation results and the real-life application evidenced that the proposed estimator performs better than the rest of the estimators.
format article
author Adewale F. Lukman
Emmanuel Adewuyi
Kristofer Månsson
B. M. Golam Kibria
author_facet Adewale F. Lukman
Emmanuel Adewuyi
Kristofer Månsson
B. M. Golam Kibria
author_sort Adewale F. Lukman
title A new estimator for the multicollinear Poisson regression model: simulation and application
title_short A new estimator for the multicollinear Poisson regression model: simulation and application
title_full A new estimator for the multicollinear Poisson regression model: simulation and application
title_fullStr A new estimator for the multicollinear Poisson regression model: simulation and application
title_full_unstemmed A new estimator for the multicollinear Poisson regression model: simulation and application
title_sort new estimator for the multicollinear poisson regression model: simulation and application
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/58340e7ad13e44fa92450363b9cfc469
work_keys_str_mv AT adewaleflukman anewestimatorforthemulticollinearpoissonregressionmodelsimulationandapplication
AT emmanueladewuyi anewestimatorforthemulticollinearpoissonregressionmodelsimulationandapplication
AT kristofermansson anewestimatorforthemulticollinearpoissonregressionmodelsimulationandapplication
AT bmgolamkibria anewestimatorforthemulticollinearpoissonregressionmodelsimulationandapplication
AT adewaleflukman newestimatorforthemulticollinearpoissonregressionmodelsimulationandapplication
AT emmanueladewuyi newestimatorforthemulticollinearpoissonregressionmodelsimulationandapplication
AT kristofermansson newestimatorforthemulticollinearpoissonregressionmodelsimulationandapplication
AT bmgolamkibria newestimatorforthemulticollinearpoissonregressionmodelsimulationandapplication
_version_ 1718391310400880640