Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images
Successful training of convolutional neural networks (CNNs) requires a substantial amount of data. With small datasets, networks generalize poorly. Data Augmentation techniques improve the generalizability of neural networks by using existing training data more effectively. Standard data augmentatio...
Guardado en:
Autores principales: | Saman Motamed, Patrik Rogalla, Farzad Khalvati |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5840f55202eb42e8ad8690506a751581 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Multi-Stage GAN for Multi-Organ Chest X-ray Image Generation and Segmentation
por: Giorgio Ciano, et al.
Publicado: (2021) -
RANDGAN: Randomized generative adversarial network for detection of COVID-19 in chest X-ray
por: Saman Motamed, et al.
Publicado: (2021) -
GAN-GL: Generative Adversarial Networks for Glacial Lake Mapping
por: Hang Zhao, et al.
Publicado: (2021) -
DisasterGAN: Generative Adversarial Networks for Remote Sensing Disaster Image Generation
por: Xue Rui, et al.
Publicado: (2021) -
Small facial image dataset augmentation using conditional GANs based on incomplete edge feature input
por: Shih-Kai Hung, et al.
Publicado: (2021)