Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides

Strain engineering: Tuning the bandgap of 2D materials The bandgap of two-dimensional semiconducting materials can be easily tuned in real time by stretching or compressing them. An international team of researcher led by Dr. Andres Castellanos-Gomez at IMDEA Nanoscience, Spain, studied the optical...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Riccardo Frisenda, Matthias Drüppel, Robert Schmidt, Steffen Michaelis de Vasconcellos, David Perez de Lara, Rudolf Bratschitsch, Michael Rohlfing, Andres Castellanos-Gomez
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Acceso en línea:https://doaj.org/article/58410036eac747488360171e3b54ff89
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:58410036eac747488360171e3b54ff89
record_format dspace
spelling oai:doaj.org-article:58410036eac747488360171e3b54ff892021-12-02T14:18:34ZBiaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides10.1038/s41699-017-0013-72397-7132https://doaj.org/article/58410036eac747488360171e3b54ff892017-05-01T00:00:00Zhttps://doi.org/10.1038/s41699-017-0013-7https://doaj.org/toc/2397-7132Strain engineering: Tuning the bandgap of 2D materials The bandgap of two-dimensional semiconducting materials can be easily tuned in real time by stretching or compressing them. An international team of researcher led by Dr. Andres Castellanos-Gomez at IMDEA Nanoscience, Spain, studied the optical properties of single-atom thick two-dimensional semiconductors under the application of tensile or compressive biaxial strain. In order to apply the strain the researchers exploited the thermal expansion or compression of the different substrates carrying the atomically thin materials and then compared their results to atomistic simulations. This strain method can be applied in a fast and reversible way and it leads to large changes in the band structure of these semiconducting materials. Research into strain engineering two-dimensional materials may help us in fabricating novel devices like color-changing light emitters or novel and more efficient solar cells.Riccardo FrisendaMatthias DrüppelRobert SchmidtSteffen Michaelis de VasconcellosDavid Perez de LaraRudolf BratschitschMichael RohlfingAndres Castellanos-GomezNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ChemistryQD1-999ENnpj 2D Materials and Applications, Vol 1, Iss 1, Pp 1-7 (2017)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Chemistry
QD1-999
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Chemistry
QD1-999
Riccardo Frisenda
Matthias Drüppel
Robert Schmidt
Steffen Michaelis de Vasconcellos
David Perez de Lara
Rudolf Bratschitsch
Michael Rohlfing
Andres Castellanos-Gomez
Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides
description Strain engineering: Tuning the bandgap of 2D materials The bandgap of two-dimensional semiconducting materials can be easily tuned in real time by stretching or compressing them. An international team of researcher led by Dr. Andres Castellanos-Gomez at IMDEA Nanoscience, Spain, studied the optical properties of single-atom thick two-dimensional semiconductors under the application of tensile or compressive biaxial strain. In order to apply the strain the researchers exploited the thermal expansion or compression of the different substrates carrying the atomically thin materials and then compared their results to atomistic simulations. This strain method can be applied in a fast and reversible way and it leads to large changes in the band structure of these semiconducting materials. Research into strain engineering two-dimensional materials may help us in fabricating novel devices like color-changing light emitters or novel and more efficient solar cells.
format article
author Riccardo Frisenda
Matthias Drüppel
Robert Schmidt
Steffen Michaelis de Vasconcellos
David Perez de Lara
Rudolf Bratschitsch
Michael Rohlfing
Andres Castellanos-Gomez
author_facet Riccardo Frisenda
Matthias Drüppel
Robert Schmidt
Steffen Michaelis de Vasconcellos
David Perez de Lara
Rudolf Bratschitsch
Michael Rohlfing
Andres Castellanos-Gomez
author_sort Riccardo Frisenda
title Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides
title_short Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides
title_full Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides
title_fullStr Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides
title_full_unstemmed Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides
title_sort biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/58410036eac747488360171e3b54ff89
work_keys_str_mv AT riccardofrisenda biaxialstraintuningoftheopticalpropertiesofsinglelayertransitionmetaldichalcogenides
AT matthiasdruppel biaxialstraintuningoftheopticalpropertiesofsinglelayertransitionmetaldichalcogenides
AT robertschmidt biaxialstraintuningoftheopticalpropertiesofsinglelayertransitionmetaldichalcogenides
AT steffenmichaelisdevasconcellos biaxialstraintuningoftheopticalpropertiesofsinglelayertransitionmetaldichalcogenides
AT davidperezdelara biaxialstraintuningoftheopticalpropertiesofsinglelayertransitionmetaldichalcogenides
AT rudolfbratschitsch biaxialstraintuningoftheopticalpropertiesofsinglelayertransitionmetaldichalcogenides
AT michaelrohlfing biaxialstraintuningoftheopticalpropertiesofsinglelayertransitionmetaldichalcogenides
AT andrescastellanosgomez biaxialstraintuningoftheopticalpropertiesofsinglelayertransitionmetaldichalcogenides
_version_ 1718391607170957312