Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity
Systemic light chain amyloidosis (AL) is caused by the production of toxic light chains and can be fatal, yet effective treatments are often not possible due to delayed diagnosis. Here the authors show that a machine learning platform analyzing light chain somatic mutations allows the prediction of...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5850900427bf4ded89d2135be99bb200 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5850900427bf4ded89d2135be99bb200 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5850900427bf4ded89d2135be99bb2002021-12-02T17:34:47ZMachine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity10.1038/s41467-021-23880-92041-1723https://doaj.org/article/5850900427bf4ded89d2135be99bb2002021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23880-9https://doaj.org/toc/2041-1723Systemic light chain amyloidosis (AL) is caused by the production of toxic light chains and can be fatal, yet effective treatments are often not possible due to delayed diagnosis. Here the authors show that a machine learning platform analyzing light chain somatic mutations allows the prediction of light chain toxicity to serve as a possible tool for early diagnosis of AL.Maura GarofaloLuca PiccoliMargherita RomeoMaria Monica BarzagoSara RavasioMathilde FoglieriniMilos MatkovicJacopo SgrignaniRaoul De GasparoMarco PrunottoLuca VaraniLuisa DiomedeOlivier MichielinAntonio LanzavecchiaAndrea CavalliNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Maura Garofalo Luca Piccoli Margherita Romeo Maria Monica Barzago Sara Ravasio Mathilde Foglierini Milos Matkovic Jacopo Sgrignani Raoul De Gasparo Marco Prunotto Luca Varani Luisa Diomede Olivier Michielin Antonio Lanzavecchia Andrea Cavalli Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity |
description |
Systemic light chain amyloidosis (AL) is caused by the production of toxic light chains and can be fatal, yet effective treatments are often not possible due to delayed diagnosis. Here the authors show that a machine learning platform analyzing light chain somatic mutations allows the prediction of light chain toxicity to serve as a possible tool for early diagnosis of AL. |
format |
article |
author |
Maura Garofalo Luca Piccoli Margherita Romeo Maria Monica Barzago Sara Ravasio Mathilde Foglierini Milos Matkovic Jacopo Sgrignani Raoul De Gasparo Marco Prunotto Luca Varani Luisa Diomede Olivier Michielin Antonio Lanzavecchia Andrea Cavalli |
author_facet |
Maura Garofalo Luca Piccoli Margherita Romeo Maria Monica Barzago Sara Ravasio Mathilde Foglierini Milos Matkovic Jacopo Sgrignani Raoul De Gasparo Marco Prunotto Luca Varani Luisa Diomede Olivier Michielin Antonio Lanzavecchia Andrea Cavalli |
author_sort |
Maura Garofalo |
title |
Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity |
title_short |
Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity |
title_full |
Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity |
title_fullStr |
Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity |
title_full_unstemmed |
Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity |
title_sort |
machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/5850900427bf4ded89d2135be99bb200 |
work_keys_str_mv |
AT mauragarofalo machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT lucapiccoli machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT margheritaromeo machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT mariamonicabarzago machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT sararavasio machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT mathildefoglierini machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT milosmatkovic machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT jacoposgrignani machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT raouldegasparo machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT marcoprunotto machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT lucavarani machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT luisadiomede machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT oliviermichielin machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT antoniolanzavecchia machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity AT andreacavalli machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity |
_version_ |
1718379941157928960 |