Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity

Systemic light chain amyloidosis (AL) is caused by the production of toxic light chains and can be fatal, yet effective treatments are often not possible due to delayed diagnosis. Here the authors show that a machine learning platform analyzing light chain somatic mutations allows the prediction of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Maura Garofalo, Luca Piccoli, Margherita Romeo, Maria Monica Barzago, Sara Ravasio, Mathilde Foglierini, Milos Matkovic, Jacopo Sgrignani, Raoul De Gasparo, Marco Prunotto, Luca Varani, Luisa Diomede, Olivier Michielin, Antonio Lanzavecchia, Andrea Cavalli
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/5850900427bf4ded89d2135be99bb200
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5850900427bf4ded89d2135be99bb200
record_format dspace
spelling oai:doaj.org-article:5850900427bf4ded89d2135be99bb2002021-12-02T17:34:47ZMachine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity10.1038/s41467-021-23880-92041-1723https://doaj.org/article/5850900427bf4ded89d2135be99bb2002021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23880-9https://doaj.org/toc/2041-1723Systemic light chain amyloidosis (AL) is caused by the production of toxic light chains and can be fatal, yet effective treatments are often not possible due to delayed diagnosis. Here the authors show that a machine learning platform analyzing light chain somatic mutations allows the prediction of light chain toxicity to serve as a possible tool for early diagnosis of AL.Maura GarofaloLuca PiccoliMargherita RomeoMaria Monica BarzagoSara RavasioMathilde FoglieriniMilos MatkovicJacopo SgrignaniRaoul De GasparoMarco PrunottoLuca VaraniLuisa DiomedeOlivier MichielinAntonio LanzavecchiaAndrea CavalliNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Maura Garofalo
Luca Piccoli
Margherita Romeo
Maria Monica Barzago
Sara Ravasio
Mathilde Foglierini
Milos Matkovic
Jacopo Sgrignani
Raoul De Gasparo
Marco Prunotto
Luca Varani
Luisa Diomede
Olivier Michielin
Antonio Lanzavecchia
Andrea Cavalli
Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity
description Systemic light chain amyloidosis (AL) is caused by the production of toxic light chains and can be fatal, yet effective treatments are often not possible due to delayed diagnosis. Here the authors show that a machine learning platform analyzing light chain somatic mutations allows the prediction of light chain toxicity to serve as a possible tool for early diagnosis of AL.
format article
author Maura Garofalo
Luca Piccoli
Margherita Romeo
Maria Monica Barzago
Sara Ravasio
Mathilde Foglierini
Milos Matkovic
Jacopo Sgrignani
Raoul De Gasparo
Marco Prunotto
Luca Varani
Luisa Diomede
Olivier Michielin
Antonio Lanzavecchia
Andrea Cavalli
author_facet Maura Garofalo
Luca Piccoli
Margherita Romeo
Maria Monica Barzago
Sara Ravasio
Mathilde Foglierini
Milos Matkovic
Jacopo Sgrignani
Raoul De Gasparo
Marco Prunotto
Luca Varani
Luisa Diomede
Olivier Michielin
Antonio Lanzavecchia
Andrea Cavalli
author_sort Maura Garofalo
title Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity
title_short Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity
title_full Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity
title_fullStr Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity
title_full_unstemmed Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity
title_sort machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/5850900427bf4ded89d2135be99bb200
work_keys_str_mv AT mauragarofalo machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT lucapiccoli machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT margheritaromeo machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT mariamonicabarzago machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT sararavasio machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT mathildefoglierini machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT milosmatkovic machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT jacoposgrignani machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT raouldegasparo machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT marcoprunotto machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT lucavarani machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT luisadiomede machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT oliviermichielin machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT antoniolanzavecchia machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
AT andreacavalli machinelearninganalysesofantibodysomaticmutationspredictimmunoglobulinlightchaintoxicity
_version_ 1718379941157928960