A factorisation-aware Matrix element emulator
Abstract In this article we present a neural network based model to emulate matrix elements. This model improves on existing methods by taking advantage of the known factorisation properties of matrix elements. In doing so we can control the behaviour of simulated matrix elements when extrapolating...
Enregistré dans:
Auteurs principaux: | D. Maître, H. Truong |
---|---|
Format: | article |
Langue: | EN |
Publié: |
SpringerOpen
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/586a39d7e38e4044bcd62be0948fce6c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
On non-factorisable contributions to t-channel single-top production
par: Christian Brønnum-Hansen, et autres
Publié: (2021) -
Virtual QCD corrections to gluon-initiated diphoton plus jet production at hadron colliders
par: Simon Badger, et autres
Publié: (2021) -
Two-loop leading-colour QCD helicity amplitudes for Higgs boson production in association with a bottom-quark pair at the LHC
par: Simon Badger, et autres
Publié: (2021) -
Quark sivers function at small x: spin-dependent odderon and the sub-eikonal evolution
par: Yuri V. Kovchegov, et autres
Publié: (2021) -
Matching N3LO QCD calculations to parton showers
par: Stefan Prestel
Publié: (2021)