Haze removal network using unified function for image dehazing
Abstract The atmospheric scattering model includes two crucial parameters for dehazing: global atmospheric light and the transmission map. Most previous dehazing methods need to obtain these two parameters separately, which makes dehazing a difficult and ill‐posed problem. Here, a new unified functi...
Guardado en:
Autores principales: | Hyungseok Oh, Hyena Kim, Yejin Kim, Changhoon Yim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/586a804a12df473c853446ede09354c3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Image Haze Removal Based on Superpixels and Markov Random Field
por: Yibo Tan, et al.
Publicado: (2020) -
Angular‐flexible network for light field image super‐resolution
por: Zhengyu Liang, et al.
Publicado: (2021) -
Synthetic aperture radar image change detection based on convolutional‐curvelet neural network and partial graph‐cut
por: Meng Jia, et al.
Publicado: (2021) -
A deep neural network based method for magnetic anomaly detection
por: Yizhen Wang, et al.
Publicado: (2022) -
A BCS microwave imaging algorithm for object detection and shape reconstruction tested with experimental data
por: Nicolás Zilberstein, et al.
Publicado: (2021)