Fatigue driving detection based on electrooculography: a review
Abstract To accurately identify fatigued driving, establishing a monitoring system is one of the important guarantees of improving traffic safety and reducing traffic accidents. Among many research methods, electrooculogram signal (EOG) has unique advantages. This paper presents a systematic literat...
Guardado en:
Autores principales: | Yuanyuan Tian, Jingyu Cao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/58700af99dc740689341ca9e453d0778 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Understanding the Performance Characteristics of Computational Storage Drives: A Case Study with SmartSSD
por: Hwajung Kim, et al.
Publicado: (2021) -
Hybrid Systems to Boost EEG-Based Real-Time Action Decoding in Car Driving Scenarios
por: Giovanni Vecchiato
Publicado: (2021) -
Fatigue Driving Detection Based on Deep Learning and Multi-Index Fusion
por: Huijie Jia, et al.
Publicado: (2021) -
A Method of Comparative Evaluation of the Drive Units of Two Bucket Elevators—A Case Study
por: Piotr Sokolski, et al.
Publicado: (2021) -
Investigating the Effect of Social and Cultural Factors on Drivers in Malaysia: A Naturalistic Driving Study
por: Ward Ahmed Al-Hussein, et al.
Publicado: (2021)