Size-dependent in vivo toxicity of PEG-coated gold nanoparticles
Xiao-Dong Zhang, Di Wu, Xiu Shen, Pei-Xun Liu, Na Yang, Bin Zhao, Hao Zhang, Yuan-Ming Sun, Liang-An Zhang, Fei-Yue FanInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, People&...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/587e6a4244564dda811694283f52bc20 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:587e6a4244564dda811694283f52bc20 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:587e6a4244564dda811694283f52bc202021-12-02T05:09:59ZSize-dependent in vivo toxicity of PEG-coated gold nanoparticles1176-91141178-2013https://doaj.org/article/587e6a4244564dda811694283f52bc202011-09-01T00:00:00Zhttp://www.dovepress.com/size-dependent-in-vivo-toxicity-of-peg-coated-gold-nanoparticles-a8322https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Xiao-Dong Zhang, Di Wu, Xiu Shen, Pei-Xun Liu, Na Yang, Bin Zhao, Hao Zhang, Yuan-Ming Sun, Liang-An Zhang, Fei-Yue FanInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, People’s Republic of ChinaBackground: Gold nanoparticle toxicity research is currently leading towards the in vivo experiment. Most toxicology data show that the surface chemistry and physical dimensions of gold nanoparticles play an important role in toxicity. Here, we present the in vivo toxicity of 5, 10, 30, and 60 nm PEG-coated gold nanoparticles in mice.Methods: Animal survival, weight, hematology, morphology, organ index, and biochemistry were characterized at a concentration of 4000 µg/kg over 28 days.Results: The PEG-coated gold particles did not cause an obvious decrease in body weight or appreciable toxicity even after their breakdown in vivo. Biodistribution results show that 5 nm and 10 nm particles accumulated in the liver and that 30 nm particles accumulated in the spleen, while the 60 nm particles did not accumulate to an appreciable extent in either organ. Transmission electron microscopic observations showed that the 5, 10, 30, and 60 nm particles located in the blood and bone marrow cells, and that the 5 and 60 nm particles aggregated preferentially in the blood cells. The increase in spleen index and thymus index shows that the immune system can be affected by these small nanoparticles. The 10 nm gold particles induced an increase in white blood cells, while the 5 nm and 30 nm particles induced a decrease in white blood cells and red blood cells. The biochemistry results show that the 10 nm and 60 nm PEG-coated gold nanoparticles caused a significant increase in alanine transaminase and aspartate transaminase levels, indicating slight damage to the liver.Conclusion: The toxicity of PEG-coated gold particles is complex, and it cannot be concluded that the smaller particles have greater toxicity. The toxicity of the 10 nm and 60 nm particles was obviously higher than that of the 5 nm and 30 nm particles. The metabolism of these particles and protection of the liver will be more important issues for medical applications of gold-based nanomaterials in future.Keywords: gold nanoparticles, in vivo, toxicity, sizeZhang XDWu DShen XLiu PXYang NZhao BZhang HSun YMZhang LAFan FYDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2011, Iss default, Pp 2071-2081 (2011) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Zhang XD Wu D Shen X Liu PX Yang N Zhao B Zhang H Sun YM Zhang LA Fan FY Size-dependent in vivo toxicity of PEG-coated gold nanoparticles |
description |
Xiao-Dong Zhang, Di Wu, Xiu Shen, Pei-Xun Liu, Na Yang, Bin Zhao, Hao Zhang, Yuan-Ming Sun, Liang-An Zhang, Fei-Yue FanInstitute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, People’s Republic of ChinaBackground: Gold nanoparticle toxicity research is currently leading towards the in vivo experiment. Most toxicology data show that the surface chemistry and physical dimensions of gold nanoparticles play an important role in toxicity. Here, we present the in vivo toxicity of 5, 10, 30, and 60 nm PEG-coated gold nanoparticles in mice.Methods: Animal survival, weight, hematology, morphology, organ index, and biochemistry were characterized at a concentration of 4000 µg/kg over 28 days.Results: The PEG-coated gold particles did not cause an obvious decrease in body weight or appreciable toxicity even after their breakdown in vivo. Biodistribution results show that 5 nm and 10 nm particles accumulated in the liver and that 30 nm particles accumulated in the spleen, while the 60 nm particles did not accumulate to an appreciable extent in either organ. Transmission electron microscopic observations showed that the 5, 10, 30, and 60 nm particles located in the blood and bone marrow cells, and that the 5 and 60 nm particles aggregated preferentially in the blood cells. The increase in spleen index and thymus index shows that the immune system can be affected by these small nanoparticles. The 10 nm gold particles induced an increase in white blood cells, while the 5 nm and 30 nm particles induced a decrease in white blood cells and red blood cells. The biochemistry results show that the 10 nm and 60 nm PEG-coated gold nanoparticles caused a significant increase in alanine transaminase and aspartate transaminase levels, indicating slight damage to the liver.Conclusion: The toxicity of PEG-coated gold particles is complex, and it cannot be concluded that the smaller particles have greater toxicity. The toxicity of the 10 nm and 60 nm particles was obviously higher than that of the 5 nm and 30 nm particles. The metabolism of these particles and protection of the liver will be more important issues for medical applications of gold-based nanomaterials in future.Keywords: gold nanoparticles, in vivo, toxicity, size |
format |
article |
author |
Zhang XD Wu D Shen X Liu PX Yang N Zhao B Zhang H Sun YM Zhang LA Fan FY |
author_facet |
Zhang XD Wu D Shen X Liu PX Yang N Zhao B Zhang H Sun YM Zhang LA Fan FY |
author_sort |
Zhang XD |
title |
Size-dependent in vivo toxicity of PEG-coated gold nanoparticles |
title_short |
Size-dependent in vivo toxicity of PEG-coated gold nanoparticles |
title_full |
Size-dependent in vivo toxicity of PEG-coated gold nanoparticles |
title_fullStr |
Size-dependent in vivo toxicity of PEG-coated gold nanoparticles |
title_full_unstemmed |
Size-dependent in vivo toxicity of PEG-coated gold nanoparticles |
title_sort |
size-dependent in vivo toxicity of peg-coated gold nanoparticles |
publisher |
Dove Medical Press |
publishDate |
2011 |
url |
https://doaj.org/article/587e6a4244564dda811694283f52bc20 |
work_keys_str_mv |
AT zhangxd sizedependentinvivotoxicityofpegcoatedgoldnanoparticles AT wud sizedependentinvivotoxicityofpegcoatedgoldnanoparticles AT shenx sizedependentinvivotoxicityofpegcoatedgoldnanoparticles AT liupx sizedependentinvivotoxicityofpegcoatedgoldnanoparticles AT yangn sizedependentinvivotoxicityofpegcoatedgoldnanoparticles AT zhaob sizedependentinvivotoxicityofpegcoatedgoldnanoparticles AT zhangh sizedependentinvivotoxicityofpegcoatedgoldnanoparticles AT sunym sizedependentinvivotoxicityofpegcoatedgoldnanoparticles AT zhangla sizedependentinvivotoxicityofpegcoatedgoldnanoparticles AT fanfy sizedependentinvivotoxicityofpegcoatedgoldnanoparticles |
_version_ |
1718400530698469376 |