Performance and Efficiency Evaluation of ASR Inference on the Edge
Automatic speech recognition, a process of converting speech signals to text, has improved a great deal in the past decade thanks to the deep learning based systems. With the latest transformer based models, the recognition accuracy measured as word-error-rate (WER), is even below the human annotato...
Guardado en:
Autores principales: | Santosh Gondi, Vineel Pratap |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/588485d4c2fa48e7833512d9c2f772e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Performance Evaluation of Offline Speech Recognition on Edge Devices
por: Santosh Gondi, et al.
Publicado: (2021) -
Molecular cloning and expression analysis of the MaASR1 gene in banana and functional characterization under salt stress
por: Miao,Hongxia, et al.
Publicado: (2014) -
Efficient Use of GPU Memory for Large-Scale Deep Learning Model Training
por: Hyeonseong Choi, et al.
Publicado: (2021) -
Shaykh Google as Ḥāfiẓ al-ʿAṣr
por: Emad Hamdeh
Publicado: (2020) -
Diseño e implementación de un observatorio robótico teleoperado basado en Robot Operating System
por: Villalobos Rivera,Andrés, et al.
Publicado: (2018)