Early anthropoid femora reveal divergent adaptive trajectories in catarrhine hind-limb evolution
The proximal femur is key for understanding locomotion in primates. Here, the authors analyze the evolution of the proximal femur in catarrhines, including a new Aegyptopithecus fossil, and suggest that Old World monkeys and hominoids diverged from an ancestral state similar to Aegyptopithecus.
Saved in:
Main Authors: | Sergio Almécija, Melissa Tallman, Hesham M. Sallam, John G. Fleagle, Ashley S. Hammond, Erik R. Seiffert |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2019
|
Subjects: | |
Online Access: | https://doaj.org/article/5890c9e401f543d4be1bff5907bf2ba0 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Macroanatomy of the Bones of Pelvis and Hind Limb of an Asian Elephant (Elephas maximus)
by: Shil,Subrata Kumar, et al.
Published: (2013) -
Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice
by: Graziana Colaianni, et al.
Published: (2017) -
Remote Hind-Limb Ischemia Mechanism of Preserved Ejection Fraction During Heart Failure
by: Rubens P. Homme, et al.
Published: (2021) -
Hind Limb Sensory Innervation in Rats: Comparison between Sural and Saphenous Nerve Morphometry
by: Neri,Letícia Oliveira, et al.
Published: (2015) -
Spaceflight and hind limb unloading induces an arthritic phenotype in knee articular cartilage and menisci of rodents
by: Andy T. Kwok, et al.
Published: (2021)