Repot: Transferable Reinforcement Learning for Quality-Centric Networked Monitoring in Various Environments
Collecting and monitoring data in low-latency from numerous sensing devices is one of the key foundations in networked cyber-physical applications such as industrial process control, intelligent traffic control, and networked robots. As the delay in data updates can degrade the quality of networked...
Guardado en:
Autores principales: | Youngseok Lee, Woo Kyung Kim, Sung Hyun Choi, Ikjun Yeom, Honguk Woo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5896d7e1f2a54ae19ade84d6d7ca88b2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
CycleStyleGAN-Based Knowledge Transfer for a Machining Digital Twin
por: Evgeny Zotov, et al.
Publicado: (2021) -
Carbon fiber-reinforced polyamide composites with efficient stress transfer via plasma-assisted mechanochemistry
por: Jiwan You, et al.
Publicado: (2021) -
Transfer of Process References between Machine Tools for Online Tool Condition Monitoring
por: Berend Denkena, et al.
Publicado: (2021) -
A Robust Transfer Dictionary Learning Algorithm for Industrial Process Monitoring
por: Chunhua Yang, et al.
Publicado: (2021) -
Unsupervised Domain Adaptation Network With Category-Centric Prototype Aligner for Biomedical Image Segmentation
por: Ping Gong, et al.
Publicado: (2021)