Computational high-throughput screening of alloy nanoclusters for electrocatalytic hydrogen evolution
Abstract Here, we report a density functional theory (DFT)-based high-throughput screening method to successfully identify a type of alloy nanoclusters as the electrocatalyst for hydrogen evolution reaction (HER). Totally 7924 candidates of Cu-based alloy clusters of Cu55-n M n (M = Co, Ni, Ru, and...
Guardado en:
Autores principales: | Xinnan Mao, Lu Wang, Yafeng Xu, Pengju Wang, Youyong Li, Jijun Zhao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/58c5730adde0455c8df85e821dcf5bdc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
High-throughput computational-experimental screening protocol for the discovery of bimetallic catalysts
por: Byung Chul Yeo, et al.
Publicado: (2021) -
Machine-learned interatomic potentials for alloys and alloy phase diagrams
por: Conrad W. Rosenbrock, et al.
Publicado: (2021) -
Atomic and electronic basis for the serrations of refractory high-entropy alloys
por: William Yi Wang, et al.
Publicado: (2017) -
High-throughput phase-field simulations and machine learning of resistive switching in resistive random-access memory
por: Kena Zhang, et al.
Publicado: (2020) -
Uncertainty quantification and composition optimization for alloy additive manufacturing through a CALPHAD-based ICME framework
por: Xin Wang, et al.
Publicado: (2020)