Revealing missing parts of the interactome via link prediction.
Protein interaction networks (PINs) are often used to "learn" new biological function from their topology. Since current PINs are noisy, their computational de-noising via link prediction (LP) could improve the learning accuracy. LP uses the existing PIN topology to predict missing and spu...
Guardado en:
Autores principales: | Yuriy Hulovatyy, Ryan W Solava, Tijana Milenković |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/58dfd8fdee8747f69354e650b9749c63 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Perturbation of BRMS1 interactome reveals pathways that impact metastasis.
por: Rosalyn C Zimmermann, et al.
Publicado: (2021) -
Perturbation of BRMS1 interactome reveals pathways that impact metastasis
por: Rosalyn C. Zimmermann, et al.
Publicado: (2021) -
Multiscale interactome analysis coupled with off-target drug predictions reveals drug repurposing candidates for human coronavirus disease
por: Michael G. Sugiyama, et al.
Publicado: (2021) -
Generalized and social anxiety disorder interactomes show distinctive overlaps with striosome and matrix interactomes
por: Kalyani B. Karunakaran, et al.
Publicado: (2021) -
Modelling Self-Organization in Complex Networks Via a Brain-Inspired Network Automata Theory Improves Link Reliability in Protein Interactomes
por: Carlo Vittorio Cannistraci
Publicado: (2018)