Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes

Abstract The goal of this study was to evaluate the maturity of current Deep Learning classification techniques for their application in a real maternal-fetal clinical environment. A large dataset of routinely acquired maternal-fetal screening ultrasound images (which will be made publicly available...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xavier P. Burgos-Artizzu, David Coronado-Gutiérrez, Brenda Valenzuela-Alcaraz, Elisenda Bonet-Carne, Elisenda Eixarch, Fatima Crispi, Eduard Gratacós
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/58e62354554044beb548e7ef9d97b618
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:58e62354554044beb548e7ef9d97b618
record_format dspace
spelling oai:doaj.org-article:58e62354554044beb548e7ef9d97b6182021-12-02T17:45:12ZEvaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes10.1038/s41598-020-67076-52045-2322https://doaj.org/article/58e62354554044beb548e7ef9d97b6182020-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-67076-5https://doaj.org/toc/2045-2322Abstract The goal of this study was to evaluate the maturity of current Deep Learning classification techniques for their application in a real maternal-fetal clinical environment. A large dataset of routinely acquired maternal-fetal screening ultrasound images (which will be made publicly available) was collected from two different hospitals by several operators and ultrasound machines. All images were manually labeled by an expert maternal fetal clinician. Images were divided into 6 classes: four of the most widely used fetal anatomical planes (Abdomen, Brain, Femur and Thorax), the mother’s cervix (widely used for prematurity screening) and a general category to include any other less common image plane. Fetal brain images were further categorized into the 3 most common fetal brain planes (Trans-thalamic, Trans-cerebellum, Trans-ventricular) to judge fine grain categorization performance. The final dataset is comprised of over 12,400 images from 1,792 patients, making it the largest ultrasound dataset to date. We then evaluated a wide variety of state-of-the-art deep Convolutional Neural Networks on this dataset and analyzed results in depth, comparing the computational models to research technicians, which are the ones currently performing the task daily. Results indicate for the first time that computational models have similar performance compared to humans when classifying common planes in human fetal examination. However, the dataset leaves the door open on future research to further improve results, especially on fine-grained plane categorization.Xavier P. Burgos-ArtizzuDavid Coronado-GutiérrezBrenda Valenzuela-AlcarazElisenda Bonet-CarneElisenda EixarchFatima CrispiEduard GratacósNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-12 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Xavier P. Burgos-Artizzu
David Coronado-Gutiérrez
Brenda Valenzuela-Alcaraz
Elisenda Bonet-Carne
Elisenda Eixarch
Fatima Crispi
Eduard Gratacós
Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
description Abstract The goal of this study was to evaluate the maturity of current Deep Learning classification techniques for their application in a real maternal-fetal clinical environment. A large dataset of routinely acquired maternal-fetal screening ultrasound images (which will be made publicly available) was collected from two different hospitals by several operators and ultrasound machines. All images were manually labeled by an expert maternal fetal clinician. Images were divided into 6 classes: four of the most widely used fetal anatomical planes (Abdomen, Brain, Femur and Thorax), the mother’s cervix (widely used for prematurity screening) and a general category to include any other less common image plane. Fetal brain images were further categorized into the 3 most common fetal brain planes (Trans-thalamic, Trans-cerebellum, Trans-ventricular) to judge fine grain categorization performance. The final dataset is comprised of over 12,400 images from 1,792 patients, making it the largest ultrasound dataset to date. We then evaluated a wide variety of state-of-the-art deep Convolutional Neural Networks on this dataset and analyzed results in depth, comparing the computational models to research technicians, which are the ones currently performing the task daily. Results indicate for the first time that computational models have similar performance compared to humans when classifying common planes in human fetal examination. However, the dataset leaves the door open on future research to further improve results, especially on fine-grained plane categorization.
format article
author Xavier P. Burgos-Artizzu
David Coronado-Gutiérrez
Brenda Valenzuela-Alcaraz
Elisenda Bonet-Carne
Elisenda Eixarch
Fatima Crispi
Eduard Gratacós
author_facet Xavier P. Burgos-Artizzu
David Coronado-Gutiérrez
Brenda Valenzuela-Alcaraz
Elisenda Bonet-Carne
Elisenda Eixarch
Fatima Crispi
Eduard Gratacós
author_sort Xavier P. Burgos-Artizzu
title Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
title_short Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
title_full Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
title_fullStr Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
title_full_unstemmed Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
title_sort evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/58e62354554044beb548e7ef9d97b618
work_keys_str_mv AT xavierpburgosartizzu evaluationofdeepconvolutionalneuralnetworksforautomaticclassificationofcommonmaternalfetalultrasoundplanes
AT davidcoronadogutierrez evaluationofdeepconvolutionalneuralnetworksforautomaticclassificationofcommonmaternalfetalultrasoundplanes
AT brendavalenzuelaalcaraz evaluationofdeepconvolutionalneuralnetworksforautomaticclassificationofcommonmaternalfetalultrasoundplanes
AT elisendabonetcarne evaluationofdeepconvolutionalneuralnetworksforautomaticclassificationofcommonmaternalfetalultrasoundplanes
AT elisendaeixarch evaluationofdeepconvolutionalneuralnetworksforautomaticclassificationofcommonmaternalfetalultrasoundplanes
AT fatimacrispi evaluationofdeepconvolutionalneuralnetworksforautomaticclassificationofcommonmaternalfetalultrasoundplanes
AT eduardgratacos evaluationofdeepconvolutionalneuralnetworksforautomaticclassificationofcommonmaternalfetalultrasoundplanes
_version_ 1718379587521478656