Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
Abstract The goal of this study was to evaluate the maturity of current Deep Learning classification techniques for their application in a real maternal-fetal clinical environment. A large dataset of routinely acquired maternal-fetal screening ultrasound images (which will be made publicly available...
Guardado en:
Autores principales: | Xavier P. Burgos-Artizzu, David Coronado-Gutiérrez, Brenda Valenzuela-Alcaraz, Elisenda Bonet-Carne, Elisenda Eixarch, Fatima Crispi, Eduard Gratacós |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/58e62354554044beb548e7ef9d97b618 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic quantitative MRI texture analysis in small-for-gestational-age fetuses discriminates abnormal neonatal neurobehavior.
por: Magdalena Sanz-Cortes, et al.
Publicado: (2013) -
A magnetic resonance image based atlas of the rabbit brain for automatic parcellation.
por: Emma Muñoz-Moreno, et al.
Publicado: (2013) -
Paired maternal and fetal metabolomics reveal a differential fingerprint in preeclampsia versus fetal growth restriction
por: Lina Youssef, et al.
Publicado: (2021) -
Metabolomics reveals metabolic alterations by intrauterine growth restriction in the fetal rabbit brain.
por: Erwin van Vliet, et al.
Publicado: (2013) -
Mid-trimester prediction of spontaneous preterm birth with automated cervical quantitative ultrasound texture analysis and cervical length: a prospective study
por: Xavier P. Burgos-Artizzu, et al.
Publicado: (2021)