Distribution and orientation of nerve fibers and myelin assembly in a brain section retrieved by small-angle neutron scattering
Abstract The structural connectivity of the brain has been addressed by various imaging techniques such as diffusion weighted magnetic resonance imaging (DWMRI) or specific microscopic approaches based on histological staining or label-free using polarized light (e.g., three-dimensional Polarized Li...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/58e8b966c7244103b5bd3dffa819496a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:58e8b966c7244103b5bd3dffa819496a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:58e8b966c7244103b5bd3dffa819496a2021-12-02T18:53:14ZDistribution and orientation of nerve fibers and myelin assembly in a brain section retrieved by small-angle neutron scattering10.1038/s41598-021-92995-22045-2322https://doaj.org/article/58e8b966c7244103b5bd3dffa819496a2021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-92995-2https://doaj.org/toc/2045-2322Abstract The structural connectivity of the brain has been addressed by various imaging techniques such as diffusion weighted magnetic resonance imaging (DWMRI) or specific microscopic approaches based on histological staining or label-free using polarized light (e.g., three-dimensional Polarized Light Imaging (3D-PLI), Optical Coherence Tomography (OCT)). These methods are sensitive to different properties of the fiber enwrapping myelin sheaths i.e. the distribution of myelin basic protein (histology), the apparent diffusion coefficient of water molecules restricted in their movements by the myelin sheath (DWMRI), and the birefringence of the oriented myelin lipid bilayers (3D-PLI, OCT). We show that the orientation and distribution of nerve fibers as well as myelin in thin brain sections can be determined using scanning small angle neutron scattering (sSANS). Neutrons are scattered from the fiber assembly causing anisotropic diffuse small-angle scattering and Bragg peaks related to the highly ordered periodic myelin multilayer structure. The scattering anisotropy, intensity, and angular position of the Bragg peaks can be mapped across the entire brain section. This enables mapping of the fiber and myelin distribution and their orientation in a thin brain section, which was validated by 3D-PLI. The experiments became possible by optimizing the neutron beam collimation to highest flux and enhancing the myelin contrast by deuteration. This method is very sensitive to small microstructures of biological tissue and can directly extract information on the average fiber orientation and even myelin membrane thickness. The present results pave the way toward bio-imaging for detecting structural aberrations causing neurological diseases in future.Santanu MaitiHenrich FrielinghausDavid GräßelMartin DulleMarkus AxerStephan FörsterNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Santanu Maiti Henrich Frielinghaus David Gräßel Martin Dulle Markus Axer Stephan Förster Distribution and orientation of nerve fibers and myelin assembly in a brain section retrieved by small-angle neutron scattering |
description |
Abstract The structural connectivity of the brain has been addressed by various imaging techniques such as diffusion weighted magnetic resonance imaging (DWMRI) or specific microscopic approaches based on histological staining or label-free using polarized light (e.g., three-dimensional Polarized Light Imaging (3D-PLI), Optical Coherence Tomography (OCT)). These methods are sensitive to different properties of the fiber enwrapping myelin sheaths i.e. the distribution of myelin basic protein (histology), the apparent diffusion coefficient of water molecules restricted in their movements by the myelin sheath (DWMRI), and the birefringence of the oriented myelin lipid bilayers (3D-PLI, OCT). We show that the orientation and distribution of nerve fibers as well as myelin in thin brain sections can be determined using scanning small angle neutron scattering (sSANS). Neutrons are scattered from the fiber assembly causing anisotropic diffuse small-angle scattering and Bragg peaks related to the highly ordered periodic myelin multilayer structure. The scattering anisotropy, intensity, and angular position of the Bragg peaks can be mapped across the entire brain section. This enables mapping of the fiber and myelin distribution and their orientation in a thin brain section, which was validated by 3D-PLI. The experiments became possible by optimizing the neutron beam collimation to highest flux and enhancing the myelin contrast by deuteration. This method is very sensitive to small microstructures of biological tissue and can directly extract information on the average fiber orientation and even myelin membrane thickness. The present results pave the way toward bio-imaging for detecting structural aberrations causing neurological diseases in future. |
format |
article |
author |
Santanu Maiti Henrich Frielinghaus David Gräßel Martin Dulle Markus Axer Stephan Förster |
author_facet |
Santanu Maiti Henrich Frielinghaus David Gräßel Martin Dulle Markus Axer Stephan Förster |
author_sort |
Santanu Maiti |
title |
Distribution and orientation of nerve fibers and myelin assembly in a brain section retrieved by small-angle neutron scattering |
title_short |
Distribution and orientation of nerve fibers and myelin assembly in a brain section retrieved by small-angle neutron scattering |
title_full |
Distribution and orientation of nerve fibers and myelin assembly in a brain section retrieved by small-angle neutron scattering |
title_fullStr |
Distribution and orientation of nerve fibers and myelin assembly in a brain section retrieved by small-angle neutron scattering |
title_full_unstemmed |
Distribution and orientation of nerve fibers and myelin assembly in a brain section retrieved by small-angle neutron scattering |
title_sort |
distribution and orientation of nerve fibers and myelin assembly in a brain section retrieved by small-angle neutron scattering |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/58e8b966c7244103b5bd3dffa819496a |
work_keys_str_mv |
AT santanumaiti distributionandorientationofnervefibersandmyelinassemblyinabrainsectionretrievedbysmallangleneutronscattering AT henrichfrielinghaus distributionandorientationofnervefibersandmyelinassemblyinabrainsectionretrievedbysmallangleneutronscattering AT davidgraßel distributionandorientationofnervefibersandmyelinassemblyinabrainsectionretrievedbysmallangleneutronscattering AT martindulle distributionandorientationofnervefibersandmyelinassemblyinabrainsectionretrievedbysmallangleneutronscattering AT markusaxer distributionandorientationofnervefibersandmyelinassemblyinabrainsectionretrievedbysmallangleneutronscattering AT stephanforster distributionandorientationofnervefibersandmyelinassemblyinabrainsectionretrievedbysmallangleneutronscattering |
_version_ |
1718377326960443392 |