Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning

Deep brain stimulation programming for Parkinson’s disease entails the assessment of a large number of possible simulation settings, requiring numerous clinic visits after surgery. Here, the authors show that patterns of functional MRI can predict the optimal stimulation settings.

Guardado en:
Detalles Bibliográficos
Autores principales: Alexandre Boutet, Radhika Madhavan, Gavin J. B. Elias, Suresh E. Joel, Robert Gramer, Manish Ranjan, Vijayashankar Paramanandam, David Xu, Jurgen Germann, Aaron Loh, Suneil K. Kalia, Mojgan Hodaie, Bryan Li, Sreeram Prasad, Ailish Coblentz, Renato P. Munhoz, Jeffrey Ashe, Walter Kucharczyk, Alfonso Fasano, Andres M. Lozano
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/58ee235dc4e54cd085cabad46031c324
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:58ee235dc4e54cd085cabad46031c324
record_format dspace
spelling oai:doaj.org-article:58ee235dc4e54cd085cabad46031c3242021-12-02T14:49:08ZPredicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning10.1038/s41467-021-23311-92041-1723https://doaj.org/article/58ee235dc4e54cd085cabad46031c3242021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23311-9https://doaj.org/toc/2041-1723Deep brain stimulation programming for Parkinson’s disease entails the assessment of a large number of possible simulation settings, requiring numerous clinic visits after surgery. Here, the authors show that patterns of functional MRI can predict the optimal stimulation settings.Alexandre BoutetRadhika MadhavanGavin J. B. EliasSuresh E. JoelRobert GramerManish RanjanVijayashankar ParamanandamDavid XuJurgen GermannAaron LohSuneil K. KaliaMojgan HodaieBryan LiSreeram PrasadAilish CoblentzRenato P. MunhozJeffrey AsheWalter KucharczykAlfonso FasanoAndres M. LozanoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Alexandre Boutet
Radhika Madhavan
Gavin J. B. Elias
Suresh E. Joel
Robert Gramer
Manish Ranjan
Vijayashankar Paramanandam
David Xu
Jurgen Germann
Aaron Loh
Suneil K. Kalia
Mojgan Hodaie
Bryan Li
Sreeram Prasad
Ailish Coblentz
Renato P. Munhoz
Jeffrey Ashe
Walter Kucharczyk
Alfonso Fasano
Andres M. Lozano
Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning
description Deep brain stimulation programming for Parkinson’s disease entails the assessment of a large number of possible simulation settings, requiring numerous clinic visits after surgery. Here, the authors show that patterns of functional MRI can predict the optimal stimulation settings.
format article
author Alexandre Boutet
Radhika Madhavan
Gavin J. B. Elias
Suresh E. Joel
Robert Gramer
Manish Ranjan
Vijayashankar Paramanandam
David Xu
Jurgen Germann
Aaron Loh
Suneil K. Kalia
Mojgan Hodaie
Bryan Li
Sreeram Prasad
Ailish Coblentz
Renato P. Munhoz
Jeffrey Ashe
Walter Kucharczyk
Alfonso Fasano
Andres M. Lozano
author_facet Alexandre Boutet
Radhika Madhavan
Gavin J. B. Elias
Suresh E. Joel
Robert Gramer
Manish Ranjan
Vijayashankar Paramanandam
David Xu
Jurgen Germann
Aaron Loh
Suneil K. Kalia
Mojgan Hodaie
Bryan Li
Sreeram Prasad
Ailish Coblentz
Renato P. Munhoz
Jeffrey Ashe
Walter Kucharczyk
Alfonso Fasano
Andres M. Lozano
author_sort Alexandre Boutet
title Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning
title_short Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning
title_full Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning
title_fullStr Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning
title_full_unstemmed Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning
title_sort predicting optimal deep brain stimulation parameters for parkinson’s disease using functional mri and machine learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/58ee235dc4e54cd085cabad46031c324
work_keys_str_mv AT alexandreboutet predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT radhikamadhavan predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT gavinjbelias predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT sureshejoel predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT robertgramer predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT manishranjan predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT vijayashankarparamanandam predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT davidxu predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT jurgengermann predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT aaronloh predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT suneilkkalia predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT mojganhodaie predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT bryanli predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT sreeramprasad predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT ailishcoblentz predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT renatopmunhoz predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT jeffreyashe predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT walterkucharczyk predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT alfonsofasano predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
AT andresmlozano predictingoptimaldeepbrainstimulationparametersforparkinsonsdiseaseusingfunctionalmriandmachinelearning
_version_ 1718389509831262208