Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning
Deep brain stimulation programming for Parkinson’s disease entails the assessment of a large number of possible simulation settings, requiring numerous clinic visits after surgery. Here, the authors show that patterns of functional MRI can predict the optimal stimulation settings.
Guardado en:
Autores principales: | Alexandre Boutet, Radhika Madhavan, Gavin J. B. Elias, Suresh E. Joel, Robert Gramer, Manish Ranjan, Vijayashankar Paramanandam, David Xu, Jurgen Germann, Aaron Loh, Suneil K. Kalia, Mojgan Hodaie, Bryan Li, Sreeram Prasad, Ailish Coblentz, Renato P. Munhoz, Jeffrey Ashe, Walter Kucharczyk, Alfonso Fasano, Andres M. Lozano |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/58ee235dc4e54cd085cabad46031c324 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An exploratory study into the influence of laterality and location of hippocampal sclerosis on seizure prognosis and global cortical thinning
por: Alireza Mansouri, et al.
Publicado: (2021) -
Estimation of Compressible Channel Impulse Response for OFDM Modulated Transmissions
por: Grzegorz Dziwoki, et al.
Publicado: (2021) -
Multiple pregnancies and its relationship with the development of retinopathy of prematurity (ROP)
por: Fiorot CA, et al.
Publicado: (2011) -
Genomic regions associated with multiple sclerosis are active in B cells.
por: Giulio Disanto, et al.
Publicado: (2012) -
Quantitative Proteome Analysis of <italic toggle="yes">Atg5</italic>-Deficient Mouse Embryonic Fibroblasts Reveals the Range of the Autophagy-Modulated Basal Cellular Proteome
por: Kiran Bala Sharma, et al.
Publicado: (2019)