TiO<sub>2</sub>-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting

The lack of active, stable, earth-abundant, and visible-light absorbing materials to replace plasmonic noble metals is a critical obstacle for researchers in developing highly efficient and cost-effective photocatalytic systems. Herein, a core–shell nanotube catalyst was fabricated consisting of ato...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sheng Zeng, Triratna Muneshwar, Saralyn Riddell, Ajay Peter Manuel, Ehsan Vahidzadeh, Ryan Kisslinger, Pawan Kumar, Kazi Mohammad Monirul Alam, Alexander E. Kobryn, Sergey Gusarov, Kenneth C. Cadien, Karthik Shankar
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/58f04f07932f470f9384114678bc21cb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:58f04f07932f470f9384114678bc21cb
record_format dspace
spelling oai:doaj.org-article:58f04f07932f470f9384114678bc21cb2021-11-25T17:06:28ZTiO<sub>2</sub>-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting10.3390/catal111113742073-4344https://doaj.org/article/58f04f07932f470f9384114678bc21cb2021-11-01T00:00:00Zhttps://www.mdpi.com/2073-4344/11/11/1374https://doaj.org/toc/2073-4344The lack of active, stable, earth-abundant, and visible-light absorbing materials to replace plasmonic noble metals is a critical obstacle for researchers in developing highly efficient and cost-effective photocatalytic systems. Herein, a core–shell nanotube catalyst was fabricated consisting of atomic layer deposited HfN shell and anodic TiO<sub>2</sub> support layer with full-visible regime photoactivity for photoelectrochemical water splitting. The HfN active layer has two unique characteristics: (1) A large bandgap between optical and acoustic phonon modes and (2) No electronic bandgap, which allows a large population of long life-time hot carriers, which are used to enhance the photoelectrochemical performance. The photocurrent density (≈2.5 mA·cm<sup>−2</sup> at 1 V vs. Ag/AgCl) obtained in this study under AM 1.5G 1 Sun illumination is unprecedented, as it is superior to most existing plasmonic noble metal-decorated catalysts and surprisingly indicates a photocurrent response that extends to 730 nm. The result demonstrates the far-reaching application potential of replacing active HER/HOR noble metals such as Au, Ag, Pt, Pd, etc. with low-cost plasmonic ceramics.Sheng ZengTriratna MuneshwarSaralyn RiddellAjay Peter ManuelEhsan VahidzadehRyan KisslingerPawan KumarKazi Mohammad Monirul AlamAlexander E. KobrynSergey GusarovKenneth C. CadienKarthik ShankarMDPI AGarticleplasmonic catalysishot carrier absorberultraviolet photoelectron spectroscopydensity functional theoryFDTD electromagnetic simulationstransition metal nitridesChemical technologyTP1-1185ChemistryQD1-999ENCatalysts, Vol 11, Iss 1374, p 1374 (2021)
institution DOAJ
collection DOAJ
language EN
topic plasmonic catalysis
hot carrier absorber
ultraviolet photoelectron spectroscopy
density functional theory
FDTD electromagnetic simulations
transition metal nitrides
Chemical technology
TP1-1185
Chemistry
QD1-999
spellingShingle plasmonic catalysis
hot carrier absorber
ultraviolet photoelectron spectroscopy
density functional theory
FDTD electromagnetic simulations
transition metal nitrides
Chemical technology
TP1-1185
Chemistry
QD1-999
Sheng Zeng
Triratna Muneshwar
Saralyn Riddell
Ajay Peter Manuel
Ehsan Vahidzadeh
Ryan Kisslinger
Pawan Kumar
Kazi Mohammad Monirul Alam
Alexander E. Kobryn
Sergey Gusarov
Kenneth C. Cadien
Karthik Shankar
TiO<sub>2</sub>-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting
description The lack of active, stable, earth-abundant, and visible-light absorbing materials to replace plasmonic noble metals is a critical obstacle for researchers in developing highly efficient and cost-effective photocatalytic systems. Herein, a core–shell nanotube catalyst was fabricated consisting of atomic layer deposited HfN shell and anodic TiO<sub>2</sub> support layer with full-visible regime photoactivity for photoelectrochemical water splitting. The HfN active layer has two unique characteristics: (1) A large bandgap between optical and acoustic phonon modes and (2) No electronic bandgap, which allows a large population of long life-time hot carriers, which are used to enhance the photoelectrochemical performance. The photocurrent density (≈2.5 mA·cm<sup>−2</sup> at 1 V vs. Ag/AgCl) obtained in this study under AM 1.5G 1 Sun illumination is unprecedented, as it is superior to most existing plasmonic noble metal-decorated catalysts and surprisingly indicates a photocurrent response that extends to 730 nm. The result demonstrates the far-reaching application potential of replacing active HER/HOR noble metals such as Au, Ag, Pt, Pd, etc. with low-cost plasmonic ceramics.
format article
author Sheng Zeng
Triratna Muneshwar
Saralyn Riddell
Ajay Peter Manuel
Ehsan Vahidzadeh
Ryan Kisslinger
Pawan Kumar
Kazi Mohammad Monirul Alam
Alexander E. Kobryn
Sergey Gusarov
Kenneth C. Cadien
Karthik Shankar
author_facet Sheng Zeng
Triratna Muneshwar
Saralyn Riddell
Ajay Peter Manuel
Ehsan Vahidzadeh
Ryan Kisslinger
Pawan Kumar
Kazi Mohammad Monirul Alam
Alexander E. Kobryn
Sergey Gusarov
Kenneth C. Cadien
Karthik Shankar
author_sort Sheng Zeng
title TiO<sub>2</sub>-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting
title_short TiO<sub>2</sub>-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting
title_full TiO<sub>2</sub>-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting
title_fullStr TiO<sub>2</sub>-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting
title_full_unstemmed TiO<sub>2</sub>-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting
title_sort tio<sub>2</sub>-hfn radial nano-heterojunction: a hot carrier photoanode for sunlight-driven water-splitting
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/58f04f07932f470f9384114678bc21cb
work_keys_str_mv AT shengzeng tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting
AT triratnamuneshwar tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting
AT saralynriddell tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting
AT ajaypetermanuel tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting
AT ehsanvahidzadeh tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting
AT ryankisslinger tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting
AT pawankumar tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting
AT kazimohammadmonirulalam tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting
AT alexanderekobryn tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting
AT sergeygusarov tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting
AT kennethccadien tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting
AT karthikshankar tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting
_version_ 1718412713051291648