TiO<sub>2</sub>-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting
The lack of active, stable, earth-abundant, and visible-light absorbing materials to replace plasmonic noble metals is a critical obstacle for researchers in developing highly efficient and cost-effective photocatalytic systems. Herein, a core–shell nanotube catalyst was fabricated consisting of ato...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/58f04f07932f470f9384114678bc21cb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:58f04f07932f470f9384114678bc21cb |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:58f04f07932f470f9384114678bc21cb2021-11-25T17:06:28ZTiO<sub>2</sub>-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting10.3390/catal111113742073-4344https://doaj.org/article/58f04f07932f470f9384114678bc21cb2021-11-01T00:00:00Zhttps://www.mdpi.com/2073-4344/11/11/1374https://doaj.org/toc/2073-4344The lack of active, stable, earth-abundant, and visible-light absorbing materials to replace plasmonic noble metals is a critical obstacle for researchers in developing highly efficient and cost-effective photocatalytic systems. Herein, a core–shell nanotube catalyst was fabricated consisting of atomic layer deposited HfN shell and anodic TiO<sub>2</sub> support layer with full-visible regime photoactivity for photoelectrochemical water splitting. The HfN active layer has two unique characteristics: (1) A large bandgap between optical and acoustic phonon modes and (2) No electronic bandgap, which allows a large population of long life-time hot carriers, which are used to enhance the photoelectrochemical performance. The photocurrent density (≈2.5 mA·cm<sup>−2</sup> at 1 V vs. Ag/AgCl) obtained in this study under AM 1.5G 1 Sun illumination is unprecedented, as it is superior to most existing plasmonic noble metal-decorated catalysts and surprisingly indicates a photocurrent response that extends to 730 nm. The result demonstrates the far-reaching application potential of replacing active HER/HOR noble metals such as Au, Ag, Pt, Pd, etc. with low-cost plasmonic ceramics.Sheng ZengTriratna MuneshwarSaralyn RiddellAjay Peter ManuelEhsan VahidzadehRyan KisslingerPawan KumarKazi Mohammad Monirul AlamAlexander E. KobrynSergey GusarovKenneth C. CadienKarthik ShankarMDPI AGarticleplasmonic catalysishot carrier absorberultraviolet photoelectron spectroscopydensity functional theoryFDTD electromagnetic simulationstransition metal nitridesChemical technologyTP1-1185ChemistryQD1-999ENCatalysts, Vol 11, Iss 1374, p 1374 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
plasmonic catalysis hot carrier absorber ultraviolet photoelectron spectroscopy density functional theory FDTD electromagnetic simulations transition metal nitrides Chemical technology TP1-1185 Chemistry QD1-999 |
spellingShingle |
plasmonic catalysis hot carrier absorber ultraviolet photoelectron spectroscopy density functional theory FDTD electromagnetic simulations transition metal nitrides Chemical technology TP1-1185 Chemistry QD1-999 Sheng Zeng Triratna Muneshwar Saralyn Riddell Ajay Peter Manuel Ehsan Vahidzadeh Ryan Kisslinger Pawan Kumar Kazi Mohammad Monirul Alam Alexander E. Kobryn Sergey Gusarov Kenneth C. Cadien Karthik Shankar TiO<sub>2</sub>-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting |
description |
The lack of active, stable, earth-abundant, and visible-light absorbing materials to replace plasmonic noble metals is a critical obstacle for researchers in developing highly efficient and cost-effective photocatalytic systems. Herein, a core–shell nanotube catalyst was fabricated consisting of atomic layer deposited HfN shell and anodic TiO<sub>2</sub> support layer with full-visible regime photoactivity for photoelectrochemical water splitting. The HfN active layer has two unique characteristics: (1) A large bandgap between optical and acoustic phonon modes and (2) No electronic bandgap, which allows a large population of long life-time hot carriers, which are used to enhance the photoelectrochemical performance. The photocurrent density (≈2.5 mA·cm<sup>−2</sup> at 1 V vs. Ag/AgCl) obtained in this study under AM 1.5G 1 Sun illumination is unprecedented, as it is superior to most existing plasmonic noble metal-decorated catalysts and surprisingly indicates a photocurrent response that extends to 730 nm. The result demonstrates the far-reaching application potential of replacing active HER/HOR noble metals such as Au, Ag, Pt, Pd, etc. with low-cost plasmonic ceramics. |
format |
article |
author |
Sheng Zeng Triratna Muneshwar Saralyn Riddell Ajay Peter Manuel Ehsan Vahidzadeh Ryan Kisslinger Pawan Kumar Kazi Mohammad Monirul Alam Alexander E. Kobryn Sergey Gusarov Kenneth C. Cadien Karthik Shankar |
author_facet |
Sheng Zeng Triratna Muneshwar Saralyn Riddell Ajay Peter Manuel Ehsan Vahidzadeh Ryan Kisslinger Pawan Kumar Kazi Mohammad Monirul Alam Alexander E. Kobryn Sergey Gusarov Kenneth C. Cadien Karthik Shankar |
author_sort |
Sheng Zeng |
title |
TiO<sub>2</sub>-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting |
title_short |
TiO<sub>2</sub>-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting |
title_full |
TiO<sub>2</sub>-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting |
title_fullStr |
TiO<sub>2</sub>-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting |
title_full_unstemmed |
TiO<sub>2</sub>-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting |
title_sort |
tio<sub>2</sub>-hfn radial nano-heterojunction: a hot carrier photoanode for sunlight-driven water-splitting |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/58f04f07932f470f9384114678bc21cb |
work_keys_str_mv |
AT shengzeng tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting AT triratnamuneshwar tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting AT saralynriddell tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting AT ajaypetermanuel tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting AT ehsanvahidzadeh tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting AT ryankisslinger tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting AT pawankumar tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting AT kazimohammadmonirulalam tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting AT alexanderekobryn tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting AT sergeygusarov tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting AT kennethccadien tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting AT karthikshankar tiosub2subhfnradialnanoheterojunctionahotcarrierphotoanodeforsunlightdrivenwatersplitting |
_version_ |
1718412713051291648 |