Controlling a Van Hove singularity and Fermi surface topology at a complex oxide heterostructure interface

A singularity in a material’s density of states at the Fermi energy can drive the formation of unconventional electronic phases. Here the authors show a Van Hove singularity is tunable across the Fermi energy in an oxide heterostructure, leading to enhanced electronic correlations.

Guardado en:
Detalles Bibliográficos
Autores principales: Ryo Mori, Patrick B. Marshall, Kaveh Ahadi, Jonathan D. Denlinger, Susanne Stemmer, Alessandra Lanzara
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/58f36c02864c43a6ad54841f42d09aed
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:58f36c02864c43a6ad54841f42d09aed
record_format dspace
spelling oai:doaj.org-article:58f36c02864c43a6ad54841f42d09aed2021-12-02T15:36:04ZControlling a Van Hove singularity and Fermi surface topology at a complex oxide heterostructure interface10.1038/s41467-019-13046-z2041-1723https://doaj.org/article/58f36c02864c43a6ad54841f42d09aed2019-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13046-zhttps://doaj.org/toc/2041-1723A singularity in a material’s density of states at the Fermi energy can drive the formation of unconventional electronic phases. Here the authors show a Van Hove singularity is tunable across the Fermi energy in an oxide heterostructure, leading to enhanced electronic correlations.Ryo MoriPatrick B. MarshallKaveh AhadiJonathan D. DenlingerSusanne StemmerAlessandra LanzaraNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-7 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Ryo Mori
Patrick B. Marshall
Kaveh Ahadi
Jonathan D. Denlinger
Susanne Stemmer
Alessandra Lanzara
Controlling a Van Hove singularity and Fermi surface topology at a complex oxide heterostructure interface
description A singularity in a material’s density of states at the Fermi energy can drive the formation of unconventional electronic phases. Here the authors show a Van Hove singularity is tunable across the Fermi energy in an oxide heterostructure, leading to enhanced electronic correlations.
format article
author Ryo Mori
Patrick B. Marshall
Kaveh Ahadi
Jonathan D. Denlinger
Susanne Stemmer
Alessandra Lanzara
author_facet Ryo Mori
Patrick B. Marshall
Kaveh Ahadi
Jonathan D. Denlinger
Susanne Stemmer
Alessandra Lanzara
author_sort Ryo Mori
title Controlling a Van Hove singularity and Fermi surface topology at a complex oxide heterostructure interface
title_short Controlling a Van Hove singularity and Fermi surface topology at a complex oxide heterostructure interface
title_full Controlling a Van Hove singularity and Fermi surface topology at a complex oxide heterostructure interface
title_fullStr Controlling a Van Hove singularity and Fermi surface topology at a complex oxide heterostructure interface
title_full_unstemmed Controlling a Van Hove singularity and Fermi surface topology at a complex oxide heterostructure interface
title_sort controlling a van hove singularity and fermi surface topology at a complex oxide heterostructure interface
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/58f36c02864c43a6ad54841f42d09aed
work_keys_str_mv AT ryomori controllingavanhovesingularityandfermisurfacetopologyatacomplexoxideheterostructureinterface
AT patrickbmarshall controllingavanhovesingularityandfermisurfacetopologyatacomplexoxideheterostructureinterface
AT kavehahadi controllingavanhovesingularityandfermisurfacetopologyatacomplexoxideheterostructureinterface
AT jonathanddenlinger controllingavanhovesingularityandfermisurfacetopologyatacomplexoxideheterostructureinterface
AT susannestemmer controllingavanhovesingularityandfermisurfacetopologyatacomplexoxideheterostructureinterface
AT alessandralanzara controllingavanhovesingularityandfermisurfacetopologyatacomplexoxideheterostructureinterface
_version_ 1718386354008621056