Evaluation of prophylactic efficacy of cinnamaldehyde in murine model against Paradendryphiella arenariae mycotoxin tenuazonic acid-induced oxidative stress and organ toxicity
Abstract Cinnamaldehyde (Cin) is a natural product obtained from cinnamon and is reported to have a potential anti-fungal, anti-oxidant, anti-inflammatory and anticancer effect. The present study investigated the possible protective role of Cin against tenuazonic acid-induced mycotoxicity in the mur...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/58f8bdc6ec454209a2a044b0efbd834a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Cinnamaldehyde (Cin) is a natural product obtained from cinnamon and is reported to have a potential anti-fungal, anti-oxidant, anti-inflammatory and anticancer effect. The present study investigated the possible protective role of Cin against tenuazonic acid-induced mycotoxicity in the murine model. Tenuazonic acid (TeA), a toxin produced by Alternaria is a common contaminant in tomato and tomato-based products. Here, Swiss male mice were administered with TeA isolated from Paradendryphiella arenariae (MW504999) (source-tomato) through injection (238 µg/kg BW) and ingestion (475 µg/kg BW) routes for 2 weeks. Thereafter, the prophylaxis groups were treated with Cin (210 mg/kg BW). The experiment was carried out for 8 weeks. The treated groups were compared to the oral and intra-peritoneal experimental groups that received the toxin solely for 8 weeks. Haematological, histopathological and biochemical aspects of the experimental and the control mice were analysed. Sub-chronic intoxication of mice with TeA showed elevated malondialdehyde (MDA), reduced catalase (CAT) and superoxide dismutase (SOD) production; abnormal levels of aspartate transaminase (AST) and alanine transaminase (ALT). Treatment with Cin reversed TeA-induced alterations of antioxidant defense enzyme activities and significantly prevented TeA-induced organ damage. Thus, cinnamaldehyde showed therapeutic effects and toxicity reduction in TeA induced mycotoxicosis. |
---|