Characterization and expression of glutamate dehydrogenase in response to acute salinity stress in the Chinese mitten crab, Eriocheir sinensis.

<h4>Background</h4>Glutamate dehydrogenase (GDH) is a key enzyme for the synthesis and catabolism of glutamic acid, proline and alanine, which are important osmolytes in aquatic animals. However, the response of GDH gene expression to salinity alterations has not yet been determined in m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yueru Wang, Erchao Li, Na Yu, Xiaodan Wang, Chunfang Cai, Boping Tang, Liqiao Chen, Alain Van Wormhoudt
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5903d658362546029b7d45e93fad3a8d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5903d658362546029b7d45e93fad3a8d
record_format dspace
spelling oai:doaj.org-article:5903d658362546029b7d45e93fad3a8d2021-11-18T07:18:17ZCharacterization and expression of glutamate dehydrogenase in response to acute salinity stress in the Chinese mitten crab, Eriocheir sinensis.1932-620310.1371/journal.pone.0037316https://doaj.org/article/5903d658362546029b7d45e93fad3a8d2012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22615974/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>Glutamate dehydrogenase (GDH) is a key enzyme for the synthesis and catabolism of glutamic acid, proline and alanine, which are important osmolytes in aquatic animals. However, the response of GDH gene expression to salinity alterations has not yet been determined in macro-crustacean species.<h4>Methodology/principal findings</h4>GDH cDNA was isolated from Eriocheir sinensis. Then, GDH gene expression was analyzed in different tissues from normal crabs and the muscle of crabs following transfer from freshwater (control) directly to water with salinities of 16‰ and 30‰, respectively. Full-length GDH cDNA is 2,349 bp, consisting of a 76 bp 5'- untranslated region, a 1,695 bp open reading frame encoding 564 amino acids and a 578 bp 3'- untranslated region. E. sinensis GDH showed 64-90% identity with protein sequences of mammalian and crustacean species. Muscle was the dominant expression source among all tissues tested. Compared with the control, GDH expression significantly increased at 6 h in crabs transferred to 16‰ and 30‰ salinity, and GDH expression peaked at 48 h and 12 h, respectively, with levels approximately 7.9 and 8.5 fold higher than the control. The free amino acid (FAA) changes in muscle, under acute salinity stress (16‰ and 30‰ salinities), correlated with GDH expression levels. Total FAA content in the muscle, which was based on specific changes in arginine, proline, glycine, alanine, taurine, serine and glutamic acid, tended to increase in crabs following transfer to salt water. Among these, arginine, proline and alanine increased significantly during salinity acclimation and accounted for the highest proportion of total FAA.<h4>Conclusions</h4>E. sinensis GDH is a conserved protein that serves important functions in controlling osmoregulation. We observed that higher GDH expression after ambient salinity increase led to higher FAA metabolism, especially the synthesis of glutamic acid, which increased the synthesis of proline and alanine to meet the demand of osmoregulation at hyperosmotic conditions.Yueru WangErchao LiNa YuXiaodan WangChunfang CaiBoping TangLiqiao ChenAlain Van WormhoudtPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 5, p e37316 (2012)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Yueru Wang
Erchao Li
Na Yu
Xiaodan Wang
Chunfang Cai
Boping Tang
Liqiao Chen
Alain Van Wormhoudt
Characterization and expression of glutamate dehydrogenase in response to acute salinity stress in the Chinese mitten crab, Eriocheir sinensis.
description <h4>Background</h4>Glutamate dehydrogenase (GDH) is a key enzyme for the synthesis and catabolism of glutamic acid, proline and alanine, which are important osmolytes in aquatic animals. However, the response of GDH gene expression to salinity alterations has not yet been determined in macro-crustacean species.<h4>Methodology/principal findings</h4>GDH cDNA was isolated from Eriocheir sinensis. Then, GDH gene expression was analyzed in different tissues from normal crabs and the muscle of crabs following transfer from freshwater (control) directly to water with salinities of 16‰ and 30‰, respectively. Full-length GDH cDNA is 2,349 bp, consisting of a 76 bp 5'- untranslated region, a 1,695 bp open reading frame encoding 564 amino acids and a 578 bp 3'- untranslated region. E. sinensis GDH showed 64-90% identity with protein sequences of mammalian and crustacean species. Muscle was the dominant expression source among all tissues tested. Compared with the control, GDH expression significantly increased at 6 h in crabs transferred to 16‰ and 30‰ salinity, and GDH expression peaked at 48 h and 12 h, respectively, with levels approximately 7.9 and 8.5 fold higher than the control. The free amino acid (FAA) changes in muscle, under acute salinity stress (16‰ and 30‰ salinities), correlated with GDH expression levels. Total FAA content in the muscle, which was based on specific changes in arginine, proline, glycine, alanine, taurine, serine and glutamic acid, tended to increase in crabs following transfer to salt water. Among these, arginine, proline and alanine increased significantly during salinity acclimation and accounted for the highest proportion of total FAA.<h4>Conclusions</h4>E. sinensis GDH is a conserved protein that serves important functions in controlling osmoregulation. We observed that higher GDH expression after ambient salinity increase led to higher FAA metabolism, especially the synthesis of glutamic acid, which increased the synthesis of proline and alanine to meet the demand of osmoregulation at hyperosmotic conditions.
format article
author Yueru Wang
Erchao Li
Na Yu
Xiaodan Wang
Chunfang Cai
Boping Tang
Liqiao Chen
Alain Van Wormhoudt
author_facet Yueru Wang
Erchao Li
Na Yu
Xiaodan Wang
Chunfang Cai
Boping Tang
Liqiao Chen
Alain Van Wormhoudt
author_sort Yueru Wang
title Characterization and expression of glutamate dehydrogenase in response to acute salinity stress in the Chinese mitten crab, Eriocheir sinensis.
title_short Characterization and expression of glutamate dehydrogenase in response to acute salinity stress in the Chinese mitten crab, Eriocheir sinensis.
title_full Characterization and expression of glutamate dehydrogenase in response to acute salinity stress in the Chinese mitten crab, Eriocheir sinensis.
title_fullStr Characterization and expression of glutamate dehydrogenase in response to acute salinity stress in the Chinese mitten crab, Eriocheir sinensis.
title_full_unstemmed Characterization and expression of glutamate dehydrogenase in response to acute salinity stress in the Chinese mitten crab, Eriocheir sinensis.
title_sort characterization and expression of glutamate dehydrogenase in response to acute salinity stress in the chinese mitten crab, eriocheir sinensis.
publisher Public Library of Science (PLoS)
publishDate 2012
url https://doaj.org/article/5903d658362546029b7d45e93fad3a8d
work_keys_str_mv AT yueruwang characterizationandexpressionofglutamatedehydrogenaseinresponsetoacutesalinitystressinthechinesemittencraberiocheirsinensis
AT erchaoli characterizationandexpressionofglutamatedehydrogenaseinresponsetoacutesalinitystressinthechinesemittencraberiocheirsinensis
AT nayu characterizationandexpressionofglutamatedehydrogenaseinresponsetoacutesalinitystressinthechinesemittencraberiocheirsinensis
AT xiaodanwang characterizationandexpressionofglutamatedehydrogenaseinresponsetoacutesalinitystressinthechinesemittencraberiocheirsinensis
AT chunfangcai characterizationandexpressionofglutamatedehydrogenaseinresponsetoacutesalinitystressinthechinesemittencraberiocheirsinensis
AT bopingtang characterizationandexpressionofglutamatedehydrogenaseinresponsetoacutesalinitystressinthechinesemittencraberiocheirsinensis
AT liqiaochen characterizationandexpressionofglutamatedehydrogenaseinresponsetoacutesalinitystressinthechinesemittencraberiocheirsinensis
AT alainvanwormhoudt characterizationandexpressionofglutamatedehydrogenaseinresponsetoacutesalinitystressinthechinesemittencraberiocheirsinensis
_version_ 1718423664717725696