Training confounder-free deep learning models for medical applications
The presence of confounding effects is one of the most critical challenges in using deep learning to advance discovery in medical imaging studies. Here, the authors introduce an end-to-end approach for deriving features invariant to confounding factors as inputs to prediction models.
Guardado en:
Autores principales: | Qingyu Zhao, Ehsan Adeli, Kilian M. Pohl |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/59077cc4c0464b168994c4db5c2b33d0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Congruency sequence effects without feature integration or contingency learning confounds.
por: James R Schmidt, et al.
Publicado: (2014) -
Heterogeneity Confounds Establishment of “a” Model Microbial Strain
por: Nancy P. Keller
Publicado: (2017) -
Relaxation of Some Confusions about Confounders
por: Ádám Zlatniczki, et al.
Publicado: (2021) -
An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning
por: Chi-Long Chen, et al.
Publicado: (2021) -
Master clinical medical knowledge at certificated-doctor-level with deep learning model
por: Ji Wu, et al.
Publicado: (2018)