Redundancy Is Not Necessarily Detrimental in Classification Problems
In feature selection, redundancy is one of the major concerns since the removal of redundancy in data is connected with dimensionality reduction. Despite the evidence of such a connection, few works present theoretical studies regarding redundancy. In this work, we analyze the effect of redundant fe...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/59081a7873574c42abfaf89268578daa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:59081a7873574c42abfaf89268578daa |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:59081a7873574c42abfaf89268578daa2021-11-25T18:17:01ZRedundancy Is Not Necessarily Detrimental in Classification Problems10.3390/math92228992227-7390https://doaj.org/article/59081a7873574c42abfaf89268578daa2021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2899https://doaj.org/toc/2227-7390In feature selection, redundancy is one of the major concerns since the removal of redundancy in data is connected with dimensionality reduction. Despite the evidence of such a connection, few works present theoretical studies regarding redundancy. In this work, we analyze the effect of redundant features on the performance of classification models. We can summarize the contribution of this work as follows: (i) develop a theoretical framework to analyze feature construction and selection, (ii) show that certain properly defined features are redundant but make the data linearly separable, and (iii) propose a formal criterion to validate feature construction methods. The results of experiments suggest that a large number of redundant features can reduce the classification error. The results imply that it is not enough to analyze features solely using criteria that measure the amount of information provided by such features.Sebastián Alberto GrilloJosé Luis Vázquez NogueraJulio César Mello RománMiguel García-TorresJacques FaconDiego P. Pinto-RoaLuis Salgueiro RomeroFrancisco Gómez-VelaLaura Raquel Bareiro PaniaguaDeysi Natalia Leguizamon CorreaMDPI AGarticlefeature selectionfeature constructionclassificationMathematicsQA1-939ENMathematics, Vol 9, Iss 2899, p 2899 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
feature selection feature construction classification Mathematics QA1-939 |
spellingShingle |
feature selection feature construction classification Mathematics QA1-939 Sebastián Alberto Grillo José Luis Vázquez Noguera Julio César Mello Román Miguel García-Torres Jacques Facon Diego P. Pinto-Roa Luis Salgueiro Romero Francisco Gómez-Vela Laura Raquel Bareiro Paniagua Deysi Natalia Leguizamon Correa Redundancy Is Not Necessarily Detrimental in Classification Problems |
description |
In feature selection, redundancy is one of the major concerns since the removal of redundancy in data is connected with dimensionality reduction. Despite the evidence of such a connection, few works present theoretical studies regarding redundancy. In this work, we analyze the effect of redundant features on the performance of classification models. We can summarize the contribution of this work as follows: (i) develop a theoretical framework to analyze feature construction and selection, (ii) show that certain properly defined features are redundant but make the data linearly separable, and (iii) propose a formal criterion to validate feature construction methods. The results of experiments suggest that a large number of redundant features can reduce the classification error. The results imply that it is not enough to analyze features solely using criteria that measure the amount of information provided by such features. |
format |
article |
author |
Sebastián Alberto Grillo José Luis Vázquez Noguera Julio César Mello Román Miguel García-Torres Jacques Facon Diego P. Pinto-Roa Luis Salgueiro Romero Francisco Gómez-Vela Laura Raquel Bareiro Paniagua Deysi Natalia Leguizamon Correa |
author_facet |
Sebastián Alberto Grillo José Luis Vázquez Noguera Julio César Mello Román Miguel García-Torres Jacques Facon Diego P. Pinto-Roa Luis Salgueiro Romero Francisco Gómez-Vela Laura Raquel Bareiro Paniagua Deysi Natalia Leguizamon Correa |
author_sort |
Sebastián Alberto Grillo |
title |
Redundancy Is Not Necessarily Detrimental in Classification Problems |
title_short |
Redundancy Is Not Necessarily Detrimental in Classification Problems |
title_full |
Redundancy Is Not Necessarily Detrimental in Classification Problems |
title_fullStr |
Redundancy Is Not Necessarily Detrimental in Classification Problems |
title_full_unstemmed |
Redundancy Is Not Necessarily Detrimental in Classification Problems |
title_sort |
redundancy is not necessarily detrimental in classification problems |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/59081a7873574c42abfaf89268578daa |
work_keys_str_mv |
AT sebastianalbertogrillo redundancyisnotnecessarilydetrimentalinclassificationproblems AT joseluisvazqueznoguera redundancyisnotnecessarilydetrimentalinclassificationproblems AT juliocesarmelloroman redundancyisnotnecessarilydetrimentalinclassificationproblems AT miguelgarciatorres redundancyisnotnecessarilydetrimentalinclassificationproblems AT jacquesfacon redundancyisnotnecessarilydetrimentalinclassificationproblems AT diegoppintoroa redundancyisnotnecessarilydetrimentalinclassificationproblems AT luissalgueiroromero redundancyisnotnecessarilydetrimentalinclassificationproblems AT franciscogomezvela redundancyisnotnecessarilydetrimentalinclassificationproblems AT lauraraquelbareiropaniagua redundancyisnotnecessarilydetrimentalinclassificationproblems AT deysinatalialeguizamoncorrea redundancyisnotnecessarilydetrimentalinclassificationproblems |
_version_ |
1718411382107406336 |