Redundancy Is Not Necessarily Detrimental in Classification Problems
In feature selection, redundancy is one of the major concerns since the removal of redundancy in data is connected with dimensionality reduction. Despite the evidence of such a connection, few works present theoretical studies regarding redundancy. In this work, we analyze the effect of redundant fe...
Guardado en:
Autores principales: | Sebastián Alberto Grillo, José Luis Vázquez Noguera, Julio César Mello Román, Miguel García-Torres, Jacques Facon, Diego P. Pinto-Roa, Luis Salgueiro Romero, Francisco Gómez-Vela, Laura Raquel Bareiro Paniagua, Deysi Natalia Leguizamon Correa |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/59081a7873574c42abfaf89268578daa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Visualization and categorization of ecological acoustic events based on discriminant features
por: Liz Maribel Huancapaza Hilasaca, et al.
Publicado: (2021) -
Artificial Flora Algorithm-Based Feature Selection with Gradient Boosted Tree Model for Diabetes Classification
por: P N, et al.
Publicado: (2021) -
A Modified HSIFT Descriptor for Medical Image Classification of Anatomy Objects
por: Sumeer Ahmad Khan, et al.
Publicado: (2021) -
Reliable Identification of Oolong Tea Species: Nondestructive Testing Classification Based on Fluorescence Hyperspectral Technology and Machine Learning
por: Yan Hu, et al.
Publicado: (2021) -
Land Cover and Crop Classification Based on Red Edge Indices Features of GF-6 WFV Time Series Data
por: Yupeng Kang, et al.
Publicado: (2021)