Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area
Forest fire disaster is currently the subject of intense research worldwide. The development of accurate strategies to prevent potential impacts and minimize the occurrence of disastrous events as much as possible requires modeling and forecasting severe conditions. In this study, we developed five...
Guardado en:
Autores principales: | Meriame Mohajane, Romulus Costache, Firoozeh Karimi, Quoc Bao Pham, Ali Essahlaoui, Hoang Nguyen, Giovanni Laneve, Fatiha Oudija |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5909ec1491bb475587673f6dd86280e7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Field observations and remote sensing techniques for evaluation of vegetal recovery after different wildfire severity in a Mediterranean ecosystem
por: Francos,Marcos, et al.
Publicado: (2021) -
Prediction of Forest Fire Spread Rate Using UAV Images and an LSTM Model Considering the Interaction between Fire and Wind
por: Xingdong Li, et al.
Publicado: (2021) -
Adaptive Forest Fire Spread Simulation Algorithm Based on Cellular Automata
por: Liyang Sun, et al.
Publicado: (2021) - Remote sensing
-
Assessment of Chlorophyll-a concentration from Sentinel-3 satellite images at the Mediterranean Sea using CMEMS open source in situ data
por: Moutzouris-Sidiris Ioannis, et al.
Publicado: (2021)