Picture semantic similarity search based on bipartite network of picture-tag type
Searching similar pictures for a given picture is an important task in numerous applications, including image recommendation system, image classification and image retrieval. Previous studies mainly focused on the similarities of content, which measures similarities based on visual features, such as...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/590b75df58de49d0888be9538c3b3331 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:590b75df58de49d0888be9538c3b3331 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:590b75df58de49d0888be9538c3b33312021-11-11T06:44:23ZPicture semantic similarity search based on bipartite network of picture-tag type1932-6203https://doaj.org/article/590b75df58de49d0888be9538c3b33312021-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8559930/?tool=EBIhttps://doaj.org/toc/1932-6203Searching similar pictures for a given picture is an important task in numerous applications, including image recommendation system, image classification and image retrieval. Previous studies mainly focused on the similarities of content, which measures similarities based on visual features, such as color and shape, and few of them pay enough attention to semantics. In this paper, we propose a link-based semantic similarity search method, namely PictureSim, for effectively searching similar pictures by building a picture-tag network. The picture-tag network is built by “description” relationships between pictures and tags, in which tags and pictures are treated as nodes, and relationships between pictures and tags are regarded as edges. Then we design a TF-IDF-based model to removes the noisy links, so the traverses of these links can be reduced. We observe that “similar pictures contain similar tags, and similar tags describe similar pictures”, which is consistent with the intuition of the SimRank. Consequently, we utilize the SimRank algorithm to compute the similarity scores between pictures. Compared with content-based methods, PictureSim could effectively search similar pictures semantically. Extensive experiments on real datasets to demonstrate the effectiveness and efficiency of the PictureSim.Mingxi ZhangLiuqian YangYipeng DongJinhua WangQinghan ZhangPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Mingxi Zhang Liuqian Yang Yipeng Dong Jinhua Wang Qinghan Zhang Picture semantic similarity search based on bipartite network of picture-tag type |
description |
Searching similar pictures for a given picture is an important task in numerous applications, including image recommendation system, image classification and image retrieval. Previous studies mainly focused on the similarities of content, which measures similarities based on visual features, such as color and shape, and few of them pay enough attention to semantics. In this paper, we propose a link-based semantic similarity search method, namely PictureSim, for effectively searching similar pictures by building a picture-tag network. The picture-tag network is built by “description” relationships between pictures and tags, in which tags and pictures are treated as nodes, and relationships between pictures and tags are regarded as edges. Then we design a TF-IDF-based model to removes the noisy links, so the traverses of these links can be reduced. We observe that “similar pictures contain similar tags, and similar tags describe similar pictures”, which is consistent with the intuition of the SimRank. Consequently, we utilize the SimRank algorithm to compute the similarity scores between pictures. Compared with content-based methods, PictureSim could effectively search similar pictures semantically. Extensive experiments on real datasets to demonstrate the effectiveness and efficiency of the PictureSim. |
format |
article |
author |
Mingxi Zhang Liuqian Yang Yipeng Dong Jinhua Wang Qinghan Zhang |
author_facet |
Mingxi Zhang Liuqian Yang Yipeng Dong Jinhua Wang Qinghan Zhang |
author_sort |
Mingxi Zhang |
title |
Picture semantic similarity search based on bipartite network of picture-tag type |
title_short |
Picture semantic similarity search based on bipartite network of picture-tag type |
title_full |
Picture semantic similarity search based on bipartite network of picture-tag type |
title_fullStr |
Picture semantic similarity search based on bipartite network of picture-tag type |
title_full_unstemmed |
Picture semantic similarity search based on bipartite network of picture-tag type |
title_sort |
picture semantic similarity search based on bipartite network of picture-tag type |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/590b75df58de49d0888be9538c3b3331 |
work_keys_str_mv |
AT mingxizhang picturesemanticsimilaritysearchbasedonbipartitenetworkofpicturetagtype AT liuqianyang picturesemanticsimilaritysearchbasedonbipartitenetworkofpicturetagtype AT yipengdong picturesemanticsimilaritysearchbasedonbipartitenetworkofpicturetagtype AT jinhuawang picturesemanticsimilaritysearchbasedonbipartitenetworkofpicturetagtype AT qinghanzhang picturesemanticsimilaritysearchbasedonbipartitenetworkofpicturetagtype |
_version_ |
1718439402787569664 |