Table to text generation with accurate content copying
Abstract Generating fluent, coherent, and informative text from structured data is called table-to-text generation. Copying words from the table is a common method to solve the “out-of-vocabulary” problem, but it’s difficult to achieve accurate copying. In order to overcome this problem, we invent a...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/591e684fd0834775a12f7ccd1c239198 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Generating fluent, coherent, and informative text from structured data is called table-to-text generation. Copying words from the table is a common method to solve the “out-of-vocabulary” problem, but it’s difficult to achieve accurate copying. In order to overcome this problem, we invent an auto-regressive framework based on the transformer that combines a copying mechanism and language modeling to generate target texts. Firstly, to make the model better learn the semantic relevance between table and text, we apply a word transformation method, which incorporates the field and position information into the target text to acquire the position of where to copy. Then we propose two auxiliary learning objectives, namely table-text constraint loss and copy loss. Table-text constraint loss is used to effectively model table inputs, whereas copy loss is exploited to precisely copy word fragments from a table. Furthermore, we improve the text search strategy to reduce the probability of generating incoherent and repetitive sentences. The model is verified by experiments on two datasets and better results are obtained than the baseline model. On WIKIBIO, the result is improved from 45.47 to 46.87 on BLEU and from 41.54 to 42.28 on ROUGE. On ROTOWIRE, the result is increased by 4.29% on CO metric, and 1.93 points higher on BLEU. |
---|