Mast cell activation in the acupoint is important for the electroacupuncture effect against pituitrin-induced bradycardia in rabbits
Abstract This research was conducted to verify the structural and functional characteristics of mast cells in the electroacupuncture (EA) effects on bradycardia. First, we examined the mast cell density at PC 6, adjacent acupoint LU 7, and a non-acupoint. We tested the effects of EA at PC 6 on heart...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/592b39be53d949d49fc8ea4c2d3c036b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract This research was conducted to verify the structural and functional characteristics of mast cells in the electroacupuncture (EA) effects on bradycardia. First, we examined the mast cell density at PC 6, adjacent acupoint LU 7, and a non-acupoint. We tested the effects of EA at PC 6 on heart rate (HR) and blood pressure (BP) in rabbits with pituitrin-induced bradycardia. We also injected sodium cromolyn (Cro), a mast cell membrane stabilizer, at PC 6 30 min before EA to investigate if it affected the EA effects. The results showed that in both PC 6 and LU 7, the mast cell densities were higher than in the non-acupoint (P < 0.05). EA could induce mast cell degranulation at PC 6, which could be suppressed by sodium cromolyn (P < 0.05). EA improved HR, though the change was relatively small in the initial stage with a significant change at 35 min after modelling (P < 0.05). BP significantly improved at 10 min after the onset of pituitrin-induced bradycardia (P < 0.05). The EA effects on both HR and BP were suppressed by sodium cromolyn (P < 0.05). Therefore, we concluded that mast cells in the acupoint are important for the EA effects against pituitrin-induced bradycardia in rabbits. |
---|