Production of carbon occluded in phytolith is season-dependent in a bamboo forest in subtropical China.
Carbon (C) occluded in phytolith (PhytOC) is a stable form of C; when PhytOC is returned to the soil through litterfall it is stored in the soil which can be an effective way for long-term C sequestration. However, few estimates on the rate of PhytOC input to the soil are available. To better unders...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/593712278d1f4aa7b2b404a534f8bd3d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Carbon (C) occluded in phytolith (PhytOC) is a stable form of C; when PhytOC is returned to the soil through litterfall it is stored in the soil which can be an effective way for long-term C sequestration. However, few estimates on the rate of PhytOC input to the soil are available. To better understand the seasonal dynamics of PhytOC production and the annual rate of stable C sequestration through PhytOC input, we quantified the monthly litterfall, phytolith and PhytOC return to the soil over a year in a typical Lei bamboo (Phyllostachys praecox) forest in subtropical China. The monthly litterfall ranged between 14.81 and 131.18 g m(-2), and the phytolith concentration in the monthly litterfall samples ranged between 47.21 and 101.68 g kg(-1) of litter mass, with the PhytOC concentration in the phytolith ranged between 29.4 and 44.9 g kg(-1) of phytolith, equivalent to 1.8-3.6 g kg(-1) of PhytOC in the litterfall (based on litterfall dry mass). The amount of phytolith input to the soil system was 292.21 ± 69.12 (mean ± SD) kg ha(-1) yr(-1), sequestering 41.45 ± 9.32 kg CO2-e ha(-1) yr(-1) of C in the studied Lei bamboo forest. This rate of C sequestration through the formation of PhytOC found in this study falls within the range of rates for other grass-type species reported in the literature. We conclude that return of C occluded in phytolith to the soil can be a substantial source of stable soil C and finding means to increase PhytOC storage in the soil should be able to play a significant role in mitigating the rapidly increasing atmospheric CO2 concentration. |
---|