Detecting SARS-CoV-2 variants with SNP genotyping.

Tracking genetic variations from positive SARS-CoV-2 samples yields crucial information about the number of variants circulating in an outbreak and the possible lines of transmission but sequencing every positive SARS-CoV-2 sample would be prohibitively costly for population-scale test and trace ope...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Helen Harper, Amanda Burridge, Mark Winfield, Adam Finn, Andrew Davidson, David Matthews, Stephanie Hutchings, Barry Vipond, Nisha Jain, COVID-19 Genomics UK (COG-UK) Consortium, Keith Edwards, Gary Barker
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/593eab5eb7f44ded88636344488e8b3e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Tracking genetic variations from positive SARS-CoV-2 samples yields crucial information about the number of variants circulating in an outbreak and the possible lines of transmission but sequencing every positive SARS-CoV-2 sample would be prohibitively costly for population-scale test and trace operations. Genotyping is a rapid, high-throughput and low-cost alternative for screening positive SARS-CoV-2 samples in many settings. We have designed a SNP identification pipeline to identify genetic variation using sequenced SARS-CoV-2 samples. Our pipeline identifies a minimal marker panel that can define distinct genotypes. To evaluate the system, we developed a genotyping panel to detect variants-identified from SARS-CoV-2 sequences surveyed between March and May 2020 and tested this on 50 stored qRT-PCR positive SARS-CoV-2 clinical samples that had been collected across the South West of the UK in April 2020. The 50 samples split into 15 distinct genotypes and there was a 61.9% probability that any two randomly chosen samples from our set of 50 would have a distinct genotype. In a high throughput laboratory, qRT-PCR positive samples pooled into 384-well plates could be screened with a marker panel at a cost of < £1.50 per sample. Our results demonstrate the usefulness of a SNP genotyping panel to provide a rapid, cost-effective, and reliable way to monitor SARS-CoV-2 variants circulating in an outbreak. Our analysis pipeline is publicly available and will allow for marker panels to be updated periodically as viral genotypes arise or disappear from circulation.