Development and clinical application of deep learning model for lung nodules screening on CT images
Abstract Lung cancer screening based on low-dose CT (LDCT) has now been widely applied because of its effectiveness and ease of performance. Radiologists who evaluate a large LDCT screening images face enormous challenges, including mechanical repetition and boring work, the easy omission of small n...
Guardado en:
Autores principales: | Sijia Cui, Shuai Ming, Yi Lin, Fanghong Chen, Qiang Shen, Hui Li, Gen Chen, Xiangyang Gong, Haochu Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/594791c38bab43e9997acdf8270a1a5e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Design of lung nodules segmentation and recognition algorithm based on deep learning
por: Hui Yu, et al.
Publicado: (2021) -
Deep learning classification of lung cancer histology using CT images
por: Tafadzwa L. Chaunzwa, et al.
Publicado: (2021) -
Optimal dose levels in screening chest CT for unimpaired detection and volumetry of lung nodules, with and without computer assisted detection at minimal patient radiation.
por: Andreas Christe, et al.
Publicado: (2013) -
Landscape on CT screening for lung cancer in Asia
por: Triphuridet N, et al.
Publicado: (2019) -
Seasonal prevalence and characteristics of low-dose CT detected lung nodules in a general Dutch population
por: Harriet L. Lancaster, et al.
Publicado: (2021)