Deep learning for gradability classification of handheld, non-mydriatic retinal images
Abstract Screening effectively identifies patients at risk of sight-threatening diabetic retinopathy (STDR) when retinal images are captured through dilated pupils. Pharmacological mydriasis is not logistically feasible in non-clinical, community DR screening, where acquiring gradable retinal images...
Guardado en:
Autores principales: | Paul Nderitu, Joan M. Nunez do Rio, Rajna Rasheed, Rajiv Raman, Ramachandran Rajalakshmi, Christos Bergeles, Sobha Sivaprasad, for the SMART India Study Group |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/594f097782804df78a12ee67fe218b74 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quality and learning curve of handheld versus stand-alone non-mydriatic cameras
por: Gosheva M, et al.
Publicado: (2017) -
Evaluation of cone function by a handheld non-mydriatic flicker electroretinogram device
por: Nakamura N, et al.
Publicado: (2016) -
Autofluorescence and high-definition optical coherence tomography of retinal artery occlusions
por: Raeba Mathew, et al.
Publicado: (2010) -
TREND database: Retinal images of healthy young subjects visualized by a portable digital non-mydriatic fundus camera.
por: Natasa Popovic, et al.
Publicado: (2021) -
Systemic adverse events after screening of retinopathy of prematurity with mydriatic.
por: Shumpei Obata, et al.
Publicado: (2021)