Using machine learning methods for supporting GR2M model in runoff estimation in an ungauged basin
Abstract Estimating monthly runoff variation, especially in ungauged basins, is inevitable for water resource planning and management. The present study aimed to evaluate the regionalization methods for determining regional parameters of the rainfall-runoff model (i.e., GR2M model). Two regionalizat...
Guardado en:
Autores principales: | Pakorn Ditthakit, Sirimon Pinthong, Nureehan Salaeh, Fadilah Binnui, Laksanara Khwanchum, Quoc Bao Pham |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/59617bb324cc47ca801293a763e2af9b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Estimating Baseflow and Baseflow Index in Ungauged Basins Using Spatial Interpolation Techniques: A Case Study of the Southern River Basin of Thailand
por: Pakorn Ditthakit, et al.
Publicado: (2021) -
Surface runoff prediction and comparison using IHACRES and GR4J lumped models in the Mono catchment, West Africa
por: H. D. Koubodana, et al.
Publicado: (2021) -
River discharge prediction for ungauged mountainous river basins during heavy rain events based on seismic noise data
por: Shakti P.C., et al.
Publicado: (2021) -
Fuzzy clustering and distributed model for streamflow estimation in ungauged watersheds
por: Amirhosein Mosavi, et al.
Publicado: (2021) -
Impact of projected 21st century climate change on basin hydrology and runoff in the Delaware River Basin, USA
por: Timothy W. Hawkins, et al.
Publicado: (2021)