Machine-learning-assisted insight into spin ice Dy2Ti2O7
Developing an understanding of a material’s magnetic behaviour based on neutron scattering measurements often relies on extracting an effective spin model. Samarakoon et al. demonstrate an automated machine learning approach to this problem, leading to more robust inferences from complex data.
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5964d7ee7a0c4c278294454fdb52db06 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Developing an understanding of a material’s magnetic behaviour based on neutron scattering measurements often relies on extracting an effective spin model. Samarakoon et al. demonstrate an automated machine learning approach to this problem, leading to more robust inferences from complex data. |
---|