Machine-learning-assisted insight into spin ice Dy2Ti2O7
Developing an understanding of a material’s magnetic behaviour based on neutron scattering measurements often relies on extracting an effective spin model. Samarakoon et al. demonstrate an automated machine learning approach to this problem, leading to more robust inferences from complex data.
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5964d7ee7a0c4c278294454fdb52db06 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5964d7ee7a0c4c278294454fdb52db06 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5964d7ee7a0c4c278294454fdb52db062021-12-02T16:50:02ZMachine-learning-assisted insight into spin ice Dy2Ti2O710.1038/s41467-020-14660-y2041-1723https://doaj.org/article/5964d7ee7a0c4c278294454fdb52db062020-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-14660-yhttps://doaj.org/toc/2041-1723Developing an understanding of a material’s magnetic behaviour based on neutron scattering measurements often relies on extracting an effective spin model. Samarakoon et al. demonstrate an automated machine learning approach to this problem, leading to more robust inferences from complex data.Anjana M. SamarakoonKipton BarrosYing Wai LiMarkus EisenbachQiang ZhangFeng YeV. SharmaZ. L. DunHaidong ZhouSantiago A. GrigeraCristian D. BatistaD. Alan TennantNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Anjana M. Samarakoon Kipton Barros Ying Wai Li Markus Eisenbach Qiang Zhang Feng Ye V. Sharma Z. L. Dun Haidong Zhou Santiago A. Grigera Cristian D. Batista D. Alan Tennant Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
description |
Developing an understanding of a material’s magnetic behaviour based on neutron scattering measurements often relies on extracting an effective spin model. Samarakoon et al. demonstrate an automated machine learning approach to this problem, leading to more robust inferences from complex data. |
format |
article |
author |
Anjana M. Samarakoon Kipton Barros Ying Wai Li Markus Eisenbach Qiang Zhang Feng Ye V. Sharma Z. L. Dun Haidong Zhou Santiago A. Grigera Cristian D. Batista D. Alan Tennant |
author_facet |
Anjana M. Samarakoon Kipton Barros Ying Wai Li Markus Eisenbach Qiang Zhang Feng Ye V. Sharma Z. L. Dun Haidong Zhou Santiago A. Grigera Cristian D. Batista D. Alan Tennant |
author_sort |
Anjana M. Samarakoon |
title |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_short |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_full |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_fullStr |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_full_unstemmed |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_sort |
machine-learning-assisted insight into spin ice dy2ti2o7 |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/5964d7ee7a0c4c278294454fdb52db06 |
work_keys_str_mv |
AT anjanamsamarakoon machinelearningassistedinsightintospinicedy2ti2o7 AT kiptonbarros machinelearningassistedinsightintospinicedy2ti2o7 AT yingwaili machinelearningassistedinsightintospinicedy2ti2o7 AT markuseisenbach machinelearningassistedinsightintospinicedy2ti2o7 AT qiangzhang machinelearningassistedinsightintospinicedy2ti2o7 AT fengye machinelearningassistedinsightintospinicedy2ti2o7 AT vsharma machinelearningassistedinsightintospinicedy2ti2o7 AT zldun machinelearningassistedinsightintospinicedy2ti2o7 AT haidongzhou machinelearningassistedinsightintospinicedy2ti2o7 AT santiagoagrigera machinelearningassistedinsightintospinicedy2ti2o7 AT cristiandbatista machinelearningassistedinsightintospinicedy2ti2o7 AT dalantennant machinelearningassistedinsightintospinicedy2ti2o7 |
_version_ |
1718383159756718080 |