Machine-learning-assisted insight into spin ice Dy2Ti2O7
Developing an understanding of a material’s magnetic behaviour based on neutron scattering measurements often relies on extracting an effective spin model. Samarakoon et al. demonstrate an automated machine learning approach to this problem, leading to more robust inferences from complex data.
Guardado en:
Autores principales: | Anjana M. Samarakoon, Kipton Barros, Ying Wai Li, Markus Eisenbach, Qiang Zhang, Feng Ye, V. Sharma, Z. L. Dun, Haidong Zhou, Santiago A. Grigera, Cristian D. Batista, D. Alan Tennant |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5964d7ee7a0c4c278294454fdb52db06 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Intermediate magnetization state and competing orders in Dy2Ti2O7 and Ho2Ti2O7
por: R. A. Borzi, et al.
Publicado: (2016) -
Nuclear spin assisted quantum tunnelling of magnetic monopoles in spin ice
por: C. Paulsen, et al.
Publicado: (2019) -
Quantum Versus Classical Spin Fragmentation in Dipolar Kagome Ice Ho_{3}Mg_{2}Sb_{3}O_{14}
por: Zhiling Dun, et al.
Publicado: (2020) -
Comparison of the sequence-dependent fluorescence of the cyanine dyes Cy3, Cy5, DyLight DY547 and DyLight DY647 on single-stranded DNA.
por: Nicole Kretschy, et al.
Publicado: (2014) -
Synthesis and luminescence of SrAl2O4: Eu2+, Dy3+
por: Ahmad-Fauzi, M., et al.
Publicado: (2012)